1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fgiga [73]
4 years ago
9

How to find the unknown length of right triangle

Mathematics
1 answer:
sveticcg [70]4 years ago
8 0
If you know that, you can use sin45°.
sin45°=√2/2
Because AC=18
So, the AB=9√2
And it is a right triangle, the other angle are both 45°.
So, AB=BC=9√2
Those are answer, If you don't understand you can ask me.
You might be interested in
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Prove that 3:8 is eqivalent tp 12:32
kifflom [539]
3:8 can also be written as 3/8

12:32 can also be written as 12/32

\frac{12}{32} = \frac{3\times 4}{8\times 4} = \frac{3}{8}

So thus 3:8 is equivalent to 12:32
5 0
3 years ago
Read 2 more answers
The blue dot is at what level on the number line
sesenic [268]

Answer:

The dot is at positive 4.

4 0
3 years ago
Read 2 more answers
Determine what values makes this rational expression undefined x+1/x^2+2x-24
Nuetrik [128]

The expression ...

... (x+1)/(x²+2x-24)

will have a zero denominator when

... x² +2x -24 = 0

... (x +6)(x -4) = 0 . . . . . factored form

... x = -6, x = 4 . . . . . . . values of x that make the factors zero

The rational expression will be undefined when x = -6 or x = 4.

8 0
3 years ago
What number is 5% of 46
erik [133]
5% is equal to .05
so

46*.05= 2.3

2.3 is 5% of 46 :)
3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the coordinate of the midpoint of wq?
    9·1 answer
  • Sarah has gone to work for 60 days on 39 of those days she arrived at work before 8:30 a.m. On the rest of those days she arrive
    9·1 answer
  • Imagine you are standing near a large rectangular pool and your friend asks you how far you think it is from one corner of the p
    8·1 answer
  • The loudness of a lawnmower is measured in decibels, modeled by the formula 90 = 10 log (StartFraction I Over I Subscript 0 Base
    9·1 answer
  • Please answer 5 and 6.
    5·1 answer
  • Choose the statement that describes how to simply the complex fraction above into a UNIT RATE fraction?
    10·1 answer
  • MAX POINTS PLEASE HELP BRAINLIEST FOR CORRECT ANSWER W/ EXPLANATION
    7·2 answers
  • Jerry plays tennis once every 6 days. Sam plays tennis every 10 days and Leo comes once every 12 days. This Monday all of them p
    13·1 answer
  • EXERC
    15·1 answer
  • У
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!