Answer:
see explanation
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 6x - 2 ← is in slope- intercept form
with slope m = 6
Given a line with slope m then the slope of a line perpendicular to it is
= -
= -
, thus
y = -
x + c ← is the partial equation
To find c substitute (6, - 2 ) into the partial equation
- 2 = - 1 + c ⇒ c = - 2 + 1 = - 1
y = -
x - 1 ← equation of line
Answer:
Im sorry chile im trying to get more points
Step-by-step explanation:
but i think its the line passes thru y- axis point at point 0.4
Answer:
Graph is attached below
Step-by-step explanation:
You first need to plot any two points on the coordinate plane(you can also do more than two points to make it more accurate). Then, using a ruler connect the points and extend the line outwards.
Answer:
The factored expression is 2(x² + 5)(x + 3).
Step-by-step explanation:
Hey there!
We can use a factoring technique referred to as "grouping" to solve this problem.
Grouping is used for polynomials with four terms as a quick and easy factoring method to remove the GCF and get down to the initial terms that create the expression/function.
Grouping works in the following matter:
- Given equation: ax³ + bx² + cx + d
- Group a & b, c & d: (ax³ + bx²) + (cx + d)
- Pull GCFs and factors
Let's apply these steps to the given equation.
- Given equation: 2x³ + 6x² + 10x + 30
- Group a & b, c & d: (2x³ + 6x²) + (10x + 30)
- Pull GCFs and factors: 2x²(x + 3) + 10(x + 3)
As you'll see, we have a common term with both sides of the expression. This term, (x + 3), is a valuable asset to the factoring process. This is one of the factors for our expression.
Now, we use our GCFs to create another factor.
- List GCFs: 2x², 10
- Create a term: (2x² + 10)
Finally, we'll need to simplify this one by taking another GCF, 2.
- Pull GCF: 2(x² + 5)
Now that we have this term, we need to understand that this <em>could</em> also be factored further using imaginary numbers, but it is also acceptable to leave it in this form.
Therefore, we have our final factors: 2(x² + 5) and (x + 3).
However, when we factor, we place all of our terms together. This leaves us with the final answer: 2(x² + 5)(x + 3).
Answer:
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀▀░░ This is Bob
▄░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy And Paste Him onto all of ur brainly answers
░░░░░░░▄▄▐▌▄▄░░░ So, He Can Take
░░░░░░░▀███▀█░▄░░ Over brainly
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░░
░░░░░░█░░░░░░░░█░
do it or he will hunt you down and kill u (lets destroy the moderators!!!!!!!!)
we are slowing them down already! good work soilders!
Step-by-step explanation: