a)
We know that a 4-sided polygon's angles add up to 360 degrees
so to find x:
360-(69+118+84)=89 degrees
b)
For a 4-sided polygon we also know that the outside angles add up to 360 degree.
so to find p:
360-(100+62+106)=92 degrees
Hope it helps!
Answer:
ok i see that question it would be 3
Step-by-step explanation:
Total = 7 slices.
1student = 7/9 of a slice.
Total number of students:


---------------------------------------------------------------------------
Answer: She will be able to hand out to 9 students.---------------------------------------------------------------------------
Answer:
20 yards
Step-by-step explanation:
Given that:
Two Given polygons are similar :
Ratio of corresponding sides =. 1/6
Perimeter of larger polygon = 120 yards
Perimeter of smaller = p
Since they are similar, and yhe ratio of their sides Given, we use the relation :
(Smaller perimeter / larger perimeter) = (smaller side / larger side)
(p / 120) = (1 /6)
Cross multiply :
6p = 120
p = 120/6
p = 20 yards
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>