Answer:
See explanation
Explanation:
Q1:
Chlorine has 17 protons while magnesium has only 12 protons. Recall that the Zeff depends on the size of the nuclear charge. The greater the size of the nuclear charge, the larger the Zeff experienced by a valence electron.
Q2:
The larger the Zeff, the smaller the atomic radius. Since the valence electrons of Cl experience a greater Zeff than those of Mg due to greater size of the nuclear charge, the atomic radius of chlorine will be smaller than that of Mg.
Q3:
The radius of an atom increases as the value of the principal quantum number (n) increases down the group due to addition of more shells. The greater the number of shells added, the greater the principal quantum number (n) and the greater the atomic radius, hence the answer.
Answer:
the sun doesn't shine on that half
Explanation:
For a solution to be tested in this experiment and must be buffered to pH of 10, the [OH-] change will be, The hydroxide concentration would be higher and the formation of insoluble hydroxide salts with Mg^2 and Ca^2 would cause the determined concentration of water hardness to be too low.
<h3>What would be the [OH-] change?</h3>
Generally, the equation for the Total hardness is mathematically given as

Where

D=0.02/0.01=2
Therefore

T=1632ppm
in conclusion, The hydroxide concentration would be higher .
Read more about Concentration
brainly.com/question/16979235
If they didn't wear gloves while treating patients then they could get the bacteria from the hands onto the patient and it could lead to an infection.
Answer:
0.429 M
Explanation:
To find the molarity, you need to (1) convert grams to moles (using the molar mass), then (2) convert mL to L, and then (3) calculate the molarity (using the molarity ratio).
(Step 1)
Molar Mass (NaCl): 22.990 g/mol + 35.453 g/mol
Molar Mass (NaCl): 58.443 g/mol
18.8 grams NaCl 1 mole
-------------------------- x ------------------------ = 0.322 moles NaCl
58.443 grams
(Step 2)
1,000 mL = L
750.0 mL 1 L
------------------ x ----------------- = 0.7500 L
1,000 mL
(Step 3)
Molarity (M) = moles / volume (L)
Molarity = 0.332 moles / 0.7500 L
Molarity = 0.429 M