Answer:
c. 2 OH⁻(aq) + 2 H⁺(aq) ⇒ 2 H₂O(l)
Explanation:
Step 1: Write the molecular equation
The molecular equation includes all the molecular species.
H₂A(aq) + 2 NaOH(aq) ⇒ Na₂A(aq) + 2 H₂O(l)
Step 2: Write the complete ionic equation
The complete ionic equation includes all the ions and the molecular species.
2 H⁺(aq) + A²⁻(aq) + 2 Na⁺(aq) + 2 OH⁻(aq) ⇒ 2 Na⁺(aq) + A²⁻(aq) + 2 H₂O(l)
Step 3: Write the net ionic equation
The net ionic equation includes only the ions that participate in the reaction and the molecular species.
2 OH⁻(aq) + 2 H⁺(aq) ⇒ 2 H₂O(l)
Answer:
The periodic table shows all the molecules that exist
Explanation:
The correct answer is option A. Three, dumbbell.
The p sublevel has __three_orbitals that are _dunmbbell_-shaped.
The three orbitals of the p sublevel are oriented in three directions along the x, y and Z axis. The orbitals are called px, py and pz. Each p orbital can have a maximum of 2 electrons. Since there are three p orbitals, the p sublevel can have a maximum of 6 electrons.
First, we divide the number of atoms of silicon given in the problem above by Avogadro's number 6.6022 x10^23. This will give us the number of moles of silicon. Then, we multiply the number of moles by the molar mass of silicon.
number of moles = (3.6 x 10^20 atoms/6.022x10^23 atoms) = 5.97x10^-4 moles
Then, multiplying by the molar mass
(5.97x10^-4 moles)(28.0855 g/mol) = 0.017 grams