Ionization energy: the energy required to remove an electron from a neutral atom. Electron affinity: the energy change when a neutral atom attracts an electron to become a negative ion.
Answer:
Erythrocytes
Erythrocytes do not contain a nucleus. This would make answer choice "A" correct. Erythrocytes are red blood cells and these cells differ from the other cells of the body because of the absence of the nucleus. All the other cells noted have nuclei.
Explanation:
Have A Wonderful Day !!
Answer:
Explanation:
From the net ionic equation
Ba2+(aq) + SO42-(aq) ==> BaSO4(s) we see that 1 mole Ba2+ reacts with 1 mole SO42- to -> 1 mol BaSO4
Find moles of Ba2+ used: 0.250 moles/L x 0.0323 L = 0.008075 moles Ba2+
Find moles SO42- present: 0.008075 moles Ba2+ x 1 mol SO42-/1 mol Ba2+ = 0.008075 mol SO42-
Find mass of Na2SO4 present: 0.008075 mol SO42- x 1 mol Na2SO4/1 mol SO42- x 142.04 Na2SO4/mole = 1.14698 g = 1.15 g Na2SO4 (to 3 significant figures)
Answer:
B, D, E, C, A
Explanation:
We have 5 blocks with their respective masses and volumes.
Block Mass Volume
A 65.14 kg 103.38 L
B 0.64 kg 100.64 L
C 4.08 kg 104.08 L
D 3.10 kg 103.10 L
E 3.53 kg 101.00 L
The density (ρ) is an intensive property resulting from dividing the mass (m) by the volume (V), that is, ρ = m / V
ρA = 65.14 kg / 103.38 L = 0.6301 kg/L
ρB = 0.64 kg / 100.64 L = 0.0064 kg/L
ρC = 4.08 kg / 104.08 L = 0.0392 kg/L
ρD = 3.10 kg / 103.10 L = 0.0301 kg/L
ρE = 3.53 kg / 101.00 L = 0.0350 kg/L
The order from least dense to most dense is B, D, E, C, A