Answer: 330.88 J
Explanation:
Given
Linear velocity of the ball, v = 17.1 m/s
Distance from the joint, d = 0.47 m
Moment of inertia, I = 0.5 kgm²
The rotational kinetic energy, KE(rot) of an object is given by
KE(rot) = 1/2Iw²
Also, the angular velocity is given
w = v/r
Firstly, we calculate the angular velocity. Since it's needed in calculating the Kinetic Energy
w = v/r
w = 17.1 / 0.47
w = 36.38 rad/s
Now, substituting the value of w, with the already given value of I in the equation, we have
KE(rot) = 1/2Iw²
KE(rot) = 1/2 * 0.5 * 36.38²
KE(rot) = 0.25 * 1323.5
KE(rot) = 330.88 J
<h2><u>Answer:</u></h2>
Cynophobia
<h3><u>Explanation:</u></h3>
Cynophobia originates from the Greek words that signify "dog" (cyno) and "fear" (phobis). An individual who has cynophobia encounters a dread of mutts that is both unreasonable and tenacious. It's something beyond feeling of scaredness whether a dog is barking or an individual is around dogs.
An individual who has cynophobia encounters a dread of dogs that is both silly and constant. Explicit fears, similar to cynophobia, influence somewhere in the range of 7 to 9 percent of the populace. They're regular enough that they're formally perceived in the Diagnostic and Statistical Manual of Mental Disorders,
A change in position with respect to a reference point is called motion
hope it helps...
Possibilities . . .
-- nuclear reaction
-- nuclear fission
-- nuclear fusion
-- radioactive decay.
Any of these makes it a true statement.
The initial velocity of Ms. Stafford is

, while her acceleration is

This is a uniform accelerated motion, so we can calculate the total distance travelled by Ms. Stafford in a time of

using the law of motion for a uniform accelerated motion: