1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STatiana [176]
3 years ago
11

The mechanical energy of a bicycle at the top of a hill is 6,000 J. The bicycle stops at the bottom of the hill by applying the

brakes. If the potential energy of the bicycle is 2,000 J at the bottom of the hill, how much thermal energy was produced?
Physics
1 answer:
Semmy [17]3 years ago
7 0

Answer:

Thermal energy produce =4,000 J.

Explanation:

Given that

Mechanical  energy at the top of hill = 6,000 J

Mechanical  energy at the bottom of hill = 2,000 J

We know that energy is conserve

Energy at top of hill = energy at bottom of hill + Thermal energy produce

So now by putting the values

Energy at top of hill = energy at bottom of hill + Thermal energy produce

6,000 = 2,000+ Thermal energy produce

Thermal energy produce =6,000-2,000 J

Thermal energy produce =4,000 J.

As we know that thermal energy produce due to friction when one mechanical component slides on the other mechanical component then always heat is generated and this heat is known as thermal energy.

You might be interested in
Salmon often jump waterfalls to reach their
natta225 [31]

Answer:

5.0 m/s

Explanation:

The horizontal motion of the salmon is uniform, so the horizontal component of the salmon's velocity is constant and it is

v_x = u cos \theta

where u is the initial speed and \theta=37.7^{\circ}. The horizontal distance travelled by the salmon is

d=v_x t = (ucos \theta)t

where d = 1.95 m and t is the time needed to reach the final point.

Re-arranging for t,

t=\frac{d}{v_x}=\frac{d}{u cos \theta} (1)

Along the vertical direction, the equation of motion is

y=h+u_y t -\frac{1}{2}gt^2

where:

y = 0.311 m is the final height reached by the salmon

h = 0 is the initial height

u_y = u sin \theta is the vertical component of the initial velocity of the salmon

g=9.81 m/s^2 is the acceleration of gravity

t is the time

Substituting t as found in eq.(1), we get the equation

y=(u sin \theta) \frac{d}{u cos \theta}- \frac{1}{2}g\frac{d^2}{u^2 cos^2 \theta}=d tan \theta - \frac{1}{2}g\frac{d^2}{u^2 cos^2 \theta}

and we can solve this formula for u, the initial speed of the salmon:

y=d tan \theta - \frac{1}{2}g\frac{d^2}{u^2 cos^2 \theta}\\\\u=\sqrt{\frac{gd^2}{2(dtan \theta -y)cos^2 \theta}}=\sqrt{\frac{(9.81)(1.95)^2}{2((1.95)(tan 37.7^{\circ}) -0.311)cos^2 37.7^{\circ}}}=5.0 m/s

5 0
3 years ago
Khaled said the North star is special because it appears all over the world and its changes position.
saw5 [17]
False the North Star never changes it position
3 0
2 years ago
Why do adults make bigger splashes when they jump into swimming pools than small children?
Semenov [28]

Answer:

it bc the adults are bigger then us kid so when they dip in the pool it makes bigger splashes

Explanation:

5 0
3 years ago
**100 points** PLEASE ANSWER IN 3 PARAGRAPHS
Deffense [45]

Answer:

In the previous section, we defined circular motion. The simplest case of circular motion is uniform circular motion, where an object travels a circular path at a constant speed. Note that, unlike speed, the linear velocity of an object in circular motion is constantly changing because it is always changing direction. We know from kinematics that acceleration is a change in velocity, either in magnitude or in direction or both. Therefore, an object undergoing uniform circular motion is always accelerating, even though the magnitude of its velocity is constant.

You experience this acceleration yourself every time you ride in a car while it turns a corner. If you hold the steering wheel steady during the turn and move at a constant speed, you are executing uniform circular motion. What you notice is a feeling of sliding (or being flung, depending on the speed) away from the center of the turn. This isn’t an actual force that is acting on you—it only happens because your body wants to continue moving in a straight line (as per Newton’s first law) whereas the car is turning off this straight-line path. Inside the car it appears as if you are forced away from the center of the turn. This fictitious force is known as the centrifugal force. The sharper the curve and the greater your speed, the more noticeable this effect becomes.

Figure 6.7 shows an object moving in a circular path at constant speed. The direction of the instantaneous tangential velocity is shown at two points along the path. Acceleration is in the direction of the change in velocity; in this case it points roughly toward the center of rotation. (The center of rotation is at the center of the circular path). If we imagine Δs becoming smaller and smaller, then the acceleration would point exactly toward the center of rotation, but this case is hard to draw. We call the acceleration of an object moving in uniform circular motion the centripetal acceleration ac because centripetal means center seeking.

hope it helps! stay safe and tell me if im wrong pls :D

(brainliest if you want, or if its right pls) :)

4 0
2 years ago
What is the energy range (in joules) of photons of wavelength 410 nm to 750 nm ? Express your answers using two significant figu
andreyandreev [35.5K]

Answer:

4.9 x 10^-19 J, 2.7 x 10^-19 J

Explanation:

first wavelength, λ1 = 410 nm = 410 x 10^-9 m

Second wavelength, λ2 = 750 nm = 750 x 10^-9 m

The relation between the energy and the wavelength is given by

E = h c / λ

Where, h is the Plank's constant and c be the velocity of light.

h = 6.63 x 10^-34 Js

c = 3 x 10^8 m/s

So, energy correspond to first wavelength

E1 = (6.63 x 10^-34 x 3 x 10^8) / (410 x 10^-9) = 4.85 x 10^-19 J

E1 = 4.9 x 10^-19 J

So, energy correspond to second wavelength

E2 = (6.63 x 10^-34 x 3 x 10^8) / (750 x 10^-9) = 2.652 x 10^-19 J

E2 = 2.7 x 10^-19 J

4 0
3 years ago
Other questions:
  • A dam is used to block the passage of a river and to generate electricity. Approximately 5.73 × 104 kg of water fall each second
    15·1 answer
  • What is the term of movement in a particular direction
    5·1 answer
  • What is the force required to lift the balloon with
    15·1 answer
  • A 21.6−g sample of an alloy at 93.00°C is placed into 50.0 g of water at 22.00°C in an insulated coffee-cup calorimeter with a h
    13·1 answer
  • Two drag cars race. They line up at the starting line at rest. The winning car accelerates at a constant rate a and reaches the
    11·1 answer
  • Please help me!
    13·1 answer
  • How long would it take a machine to do 5.000
    14·1 answer
  • A circular coil that has =130 turns and a radius of =11.5 cm lies in a magnetic field that has a magnitude of 0=0.0725 T directe
    9·1 answer
  • Can someone please answer this, ill give you brainliest and your getting 100 points.
    9·2 answers
  • I don’t not get anything to do with this question
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!