The right hand rule to find the direction of the magnetic field for a falling bar is:
- The charge is positive the magnetic field is outgoing, horizontally and towards us.
- The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.
The magnetic force is given by the vector product of the velocity and the magnetic field.
F = q v x B
Where the bolds indicate vectors, F is the force, q the charge on the particle, v the velocity and B the magnetic field.
In the vector product, the vectors are perpendicular, which is why the right-hand rule has been established, see attached:
- The thumb points in the direction of speed.
- Fingers extended in the direction of the magnetic field.
- The palm is in the direction of the force if the charge is positive and in the opposite direction if the charge is negative.
They indicate that the bar is dropped, therefore its speed is vertical and downwards, it moves to the left therefore this is the direction of the force, we use the right hand rule, the magnetic field must be horizontal, we have two possibilities:
- If the charge is positive the magnetic field is outgoing, horizontally and towards us.
- If the charge of the bar is negative, the magnetic field is incoming, that is, horizontal away from us
In conclusion using the right hand rule we can find the direction of the magnetic field for a falling bar is:
- The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.
- The charge is positive the magnetic field is outgoing, horizontally and towards us.
Learn more about the right hand rule here: brainly.com/question/12847190
Explanation:
Question 1
1.The wires are made of conducting materials e.g copper
2. A light bulb is made of filament material e.g tungsten with gases enclosed in a glass material
3.The lens is made of transparent glass material
4 The reflector is made of plastic with silver lining
5. The exterior casing of most flash lights are made of plastic
Question 2.
1.Copper is used to conduct electric current from the battery to the bulb
2.The tungsten filament ignite the gases and causes it to glow
3. The lens covers the lamp on your flashlight so that the glass on the lamp
/bulbs does not get broken.
4.The reflector redirects the light rays from the lamp, creating a steady beam of light, which is the light you see emitting from the flashlight.
5. The exterior cases houses the entire assembly and makes the flash light handy for use
Answer:
wavelength = 437.27 nm
Explanation:
given data
first bright fringe = 2.96 mm
slit separation = 0.325 mm
distance D = 2.20 m
solution
we know that this is double slit experiment
so we apply here Fringe width formula that is
β = ....................1
is Wavelength of light and D is Distance between screen and slit and d is slit width
so put here value and we get
=
= 437.27 × m
wavelength = 437.27 nm
Answer:
V₁ = √ (gy / 3)
Explanation:
For this exercise we will use the concepts of mechanical energy, for which we define energy n the initial point and the point of average height and / 2
Starting point
Em₀ = U₁ + U₂
Em₀ = m₁ g y₁ + m₂ g y₂
Let's place the reference system at the point where the mass m1 is
y₁ = 0
y₂ = y
Em₀ = m₂ g y = 2 m₁ g y
End point, at height yf = y / 2
= K₁ + U₁ + K₂ + U₂
= ½ m₁ v₁² + ½ m₂ v₂² + m₁ g + m₂ g
Since the masses are joined by a rope, they must have the same speed
= ½ (m₁ + m₂) v₁² + (m₁ + m₂) g
= ½ (m₁ + 2m₁) v₁² + (m₁ + 2m₁) g
How energy is conserved
Em₀ =
2 m₁ g y = ½ (m₁ + 2m₁) v₁² + (m₁ + 2m₁) g
2 m₁ g y = ½ (3m₁) v₁² + (3m₁) g y / 2
3/2 v₁² = 2 g y -3/2 g y
3/2 v₁² = ½ g y
V₁ = √ (gy / 3)
Answer:
Option (a)
Explanation:
Given that,
Mass of a car, m = 1200 kg
Force exerted by the engine, F = 600 N
Noe force,F = ma
a is the acceleration of the engine
So, the acceleration of the car is 0.5 m/s².