Answer:
7500 m/s
Explanation:
We can use the equation velocity of a wave equals wavelength times frequency. Therefore, v = wavelength*f = (25 m)(300 Hz) = m/s7,500
Answer:
Explanation:
Radius = 9.5 x 10⁻² m
area of circle = 3.14 x (9.5 x 10⁻² )²
A = 283.38 x 10⁻⁴ m²
magnetic moment = area x current
M = 283.38 x 10⁻⁴ x 5
= 1416.9 x 10⁻⁴ Am²
Torque = MBsinθ
M is magnetic moment , B is magnetic field .
Max torque = 1416.9 x 10⁻⁴ x 3.4 x 10⁻³ , for θ = 90
= 4817.46 x 10⁻⁷
= 481.7 x 10⁻⁶
= 481.7 μ J
Energy = - MBcosθ
Max energy when θ = 180
MB = 4817.46 x 10⁻⁷ J
Min energy = - 4817.46 x 10⁻⁷ for θ = 0
Answer:
0.003333 s to 0.000125s or from 3.33ms to 0.125ms wher m is for milli
1.1m to 0.04125 m
Explanation:
T= 1/f=
if f= 300Hz then T = 1/300 =0.003333 s
if f= 8000 then T= 1/8000 = 0.000125s
now v=f×wave length
or wavelength = speed/ frequency
when f = 300 Hz
wavelength = 330/300=1.1 m
wavelength = 330/8000 = 0.04125m
note : i have taken speed of sound as 330 m/s you can take any value given in between 330m/s to 340m/s
Answer:
This is because it is derived from newtons and metres as shown in the expression;
Explanation:

Answer:

Explanation:
Capacitance is defined as the charge divided in voltage.

Introducing a dielectric into a parallel plate capacitor decreases its electric field. Therefore, the voltage decreases, as follows:

Where k is the dielectric constant and
the voltage of the capacitor without a dielectric
The capacitance with a dielectric between the capacitor plates is given by:

Where k is the dielectric constant and
the capacitance of the capacitor without a dielectric. So, we have:

Therefore, a capacitor with a dielectric stores the same charge as one without a dielectric.