The statement that best describes a solution is the option C: a mixture having a uniform composition where the components cannot be seen separately and all components are in the same state.<span> That is exactly what a solution is: a homogeneous mixture, the composition is uniform, but it can vary from one solution to other. The components must be in the safe phase, but it can be any phase: solid, liquid or gas. The most classical and clear example is the salt solution, NaCl. When you dissolve a spoon of NaCl in water you will not be able to distinguish nor separating the solute from the solvent, and the mixture will have uniform composition.</span>
Mass % of nitrogen = mass of nitrogen*100 / total mass
= 14*100 / (1+ 14 + 32)
= 14*100 / 47
= 29.7 %
The dilution formula can be used to find the volume needed
c1v1 = c2v2
Where c1 is concentration and v1 is volume of the concentrated solution
And c2 is concentration and v2 is volume of the diluted solution to be prepared
c1 - 0.33 M
c2 - 0.025 M
v2 - 25 mL
Substituting these values in the equation
0.33 M x v1 = 0.025 M x 25 mL
v1 = 1.89 mL
Therefore 1.89 mL of the 0.33 M solution needs to be diluted up to 25 mL to make a 0.025 M solution
The pressure of the CO₂ = 0.995 atm
<h3>Further explanation</h3>
The complete question
<em>A student is doing experiments with CO2(g). Originally, a sample of gas is in a rigid container at 299K and 0.70 atm. The student increases the temperature of the CO2(g) in the container to 425K.</em>
<em>Calculate the pressure of the CO₂ (g) in the container at 425 K.</em>
<em />
<em />
Gay Lussac's Law
When the volume is not changed, the gas pressure is proportional to its absolute temperature

P₁=0.7 atm
T₁=299 K
T₂=425 K

<em />
<span>It is used for the separation of fluids, gas or liquid, based on density.
Hope this helps!</span>