Answer:
![r=\sqrt[3]{\frac{3v}{4} }](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3v%7D%7B4%7D%20%7D)
Step-by-step explanation:
To solve for
:
(given)
(times
on both sides)
![r=\sqrt[3]{\frac{3v}{4} }](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3v%7D%7B4%7D%20%7D)
I hope this helps :)
Answer:
Two solutions (-4,-7) and (4,7)
Step-by-step explanation:
x = y + 3
x*y = 28
(y+3)*y=28
y^2+3y-28=0
(y+7)(y-4)=0
y=-7, y=4
x=-4, x=7
Given:
Square pyramid with lateral faces.
646 ft wide at the base.
350 ft high.
Because of the term lateral faces, we need to get the lateral area of the square pyramid.
Lateral Area = a √a² + 4 h² ; a = 646 ft ; h = 350 ft
L.A. = 646 ft √(646ft)² + 4 (350ft)²
L.A. = 646 ft √417,316 ft² + 4 (122,500 ft²)
L.A. = 646 ft √417,316 ft² + 490,000 ft²
L.A. = 646 ft √907,316 ft²
L.A. = 646 ft * 952.53 ft
L.A. = 615,334.38 ft²
If we deal with Natural numbers then the range is
1 ≤ p ≤ 5