Answer:
The microorganisms present metabolic wastes that serve as the primary source of food for other living things.
Bacteria that live free in the soil or in symbiosis with plants are essential to fix nitrogen, both nitrates and ammonia. These bacteria take nitrogen directly from the air, originating compounds that can be incorporated into the composition of the soil or living beings.
This property is restricted only to prokaryotes and is widely distributed among different groups of bacteria and some archaeobacteria. It is a process that consumes a lot of energy that occurs with the mediation of the enzyme nitrogenase, which the rest of the living organisms that cannot do or comply with this process is because they lack said enzyme.
Dunaliella is a genus of microscopic algae of the Chlorophyceae class and of the order Volvocales. All are unicellular, although with very varied morphologies.
Morphologically, its main characteristic is that they lack a rigid polysaccharide cell wall.
The ecology of this genus of green algae is characterized by its high tolerance to salinity, with eukaryotic organisms having greater tolerance to salt. They are euryhaline, adapted to salt concentrations from 50 mM NaCl to almost 5.5 M NaCl.
Explanation:
By nitrogen fixation is meant the combination of molecular nitrogen or dinitrogen with oxygen or hydrogen to give oxides or ammonia that can be incorporated into the biosphere. Molecular nitrogen, which is the majority component of the atmosphere, is inert and not directly usable by most living things. Nitrogen fixation can occur abiotic (without the intervention of living beings) or by the action of microorganisms (biological nitrogen fixation). Fixation in general involves the incorporation into the biosphere of a significant amount of nitrogen, which globally can reach about 250 million tons per year, of which 150 correspond to biological fixation.
The plants that were allowed to self pollinate were the F1 plants.
The plants that are true breeding are P generation plants.
The plants where there were 3times as many tall plants as short plants are in F2 generation.
<h3><u>Explanation:</u></h3>
This question is based on the Mendel’s Experiment. Sir Gregor Johann Mendel was the father of genetics who experimented on garden pea plants <em>Pisum</em> <em>sativum</em> to see whether the characters got mixed or not and to know the real cause behind different traits of same character in plants.
He took the pure homozygous tall and short plants separately which he called as parental generation or P generation. These plants were homozygous, hence pure breeding.
As these plants were crossed between themselves, then the F1 generation showed all tall plants. This is because of the heterozygous plants which showed character of dominant trait. These plants were allowed to self pollinate.
As a result of self pollination of the F1 plants, the F2 plants were 75% tall in number whereas the other 25% short, which gave the phenotypic ratio of 3:1.
Discontinuous variation <span> refer to large, conspicuous differences from the parents</span>
This is where individuals fall into a number of distinct categories, and is based on features that cannot be measured across a complete range
continious variation refer to small, indistinct differences from the normal condition.
Milk yield in cows, for example, is determined not only by their genetic make-up but is also significantly affected by environmental factors such as pasture quality and diet, weather, and the comfort of their surroundings
<span>Answer: mycologist []</span>
Use binomial distribution with p=0.25, n=5, x=2
P(X=x)=C(n,x)p^x (1-p)^(n-x)
P(X=2)=C(5,2) 0.25^2 0.75^(5-2)
=10*0.0625*0.421875
=0.26367
So the probability of 2 of 5 children having type-O blood from these parents is 0.26367.