Answer:
<em>6.77m/s</em>
Explanation:
Using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses of the object
u1 and u2 are the velocities before collision
v is the final collision
Given
m1 = 300g = 0.3kg
u1 = 6.0m/s
m2 = 10g = 0.01kg
u2 = 30m/s
Required
The bird's speed immediately after swallowing v
Substitute the given values into the formula
m1u1 + m2u2 = (m1+m2)v
0.3(6) + 0.01(30) = (0.3+0.01)v
1.8+0.3 = 0.31v
2.1 = 0.31v
v = 2.1/0.31
<em>v = 6.77m/s</em>
<em>Hence the bird's speed immediately after swallowing is 6.77m/s</em>
Answer:
The required frequency = 0.442 Hz
Explanation:
Frequency 
where;

Then;

However;
and;
mass 


where;

Then;

replacing the values;


<u>Explanation for the given picture:</u>
Initially, three principles of movement proposed by Sir Isaac Newton in 1686 "Principia Mathematica Philosophiae Naturalis". The third law says that every action (force) in nature has an equal but has opposite reaction.
In other words, when object A produces force on object B, then this object B also exerts the same but opposite forces on object A. Remember that forces get exerted on various objects. For example, if we put a wooden block in the floor, this block will create a force that should be equal to its mass, W = mg, which will work down.
The photo above clearly shows a person jumping off a tree on a wooden board, and therefore bouncing on the board because of the force exerted by the wooden board. Newton's third law is important if a person uses his power as weight (W = mg), and this in turn turns the person upside down! hence
Newtons 3rd law applies in above picture.
Answer:
The wavelength of the radio wave will be 3.271 m
Explanation:
We have given frequency of the radio signal 
Speed of the light 
We have to find the wavelength of the radio signal
We know that wavelength is given by 
So the wavelength of the radio wave will be 3.271 m