Answer: b) τ = 0.3
Step-by-step explanation:
Given the data :
Amount of salt (x)____% body fat(y)
0.2 _______________20
0.3 _______________30
0.4 _______________22
0.5 _______________30
0.7 _______________38
0.9 _______________23
1.1 ________________30
The correlation Coefficient as obtained from the online pearson correlation Coefficient calculator is 0.3281 = 0.3 (to one decimal place) which implies that a weak positive correlation or relationship exists between the preferred amount of salt taken to the percentage body weight of an individual. This is because the value is positive and closer to 0 than 1. The closer the weaker the degree of correlation. With positive values implying a positive relationship (that is an increase in variable A leads to a corresponding increase in B and vice-versa).
Solution
Question 1:
- Use of the area of squares to explain the Pythagoras theorem is given below
- The 3 squares given above have dimensions: a, b, and c.
- The areas of the squares are given by:

- The Pythagoras theorem states that:
"The sum of the areas of the smaller squares add up to the area of the biggest square"
Thus, we have:

Question 2:
- We can apply the theorem as follows:
![\begin{gathered} 10^2+24^2=c^2 \\ 100+576=c^2 \\ 676=c^2 \\ \text{Take square root of both sides} \\ \\ c=\sqrt[]{676} \\ c=26 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%2010%5E2%2B24%5E2%3Dc%5E2%20%5C%5C%20100%2B576%3Dc%5E2%20%5C%5C%20676%3Dc%5E2%20%5C%5C%20%5Ctext%7BTake%20square%20root%20of%20both%20sides%7D%20%5C%5C%20%20%5C%5C%20c%3D%5Csqrt%5B%5D%7B676%7D%20%5C%5C%20c%3D26%20%5Cend%7Bgathered%7D)
Thus, the value of c is 26
Answer:
55*5=275
Step-by-step explanation:
Refer to the image attached.
Given:
and
are congruent.
To Prove:
ABC is an isosceles triangle.
Construction: Construct a perpendicular bisector from point B to Line segment AC.
Consider triangle ABD and BDC,
(given)
(By the definition of a perpendicular bisector)
(By the definition of a perpendicular bisector)
Therefore,
by Angle Side Angle(ASA) Postulate.
Line segment AB is congruent to Line segment BC because corresponding parts of congruent triangles are congruent.(CPCTC)