A combination is an unordered arrangement of r distinct objects in a set of n objects. To find the number of permutations, we use the following equation:
n!/((n-r)!r!)
In this case, there could be 0, 1, 2, 3, 4, or all 5 cards discarded. There is only one possible combination each for 0 or 5 cards being discarded (either none of them or all of them). We will be the above equation to find the number of combination s for 1, 2, 3, and 4 discarded cards.
5!/((5-1)!1!) = 5!/(4!*1!) = (5*4*3*2*1)/(4*3*2*1*1) = 5
5!/((5-2)!2!) = 5!/(3!2!) = (5*4*3*2*1)/(3*2*1*2*1) = 10
5!/((5-3)!3!) = 5!/(2!3!) = (5*4*3*2*1)/(2*1*3*2*1) = 10
5!/((5-4)!4!) = 5!/(1!4!) = (5*4*3*2*1)/(1*4*3*2*1) = 5
Notice that discarding 1 or discarding 4 have the same number of combinations, as do discarding 2 or 3. This is being they are inverses of each other. That is, if we discard 2 cards there will be 3 left, or if we discard 3 there will be 2 left.
Now we add together the combinations
1 + 5 + 10 + 10 + 5 + 1 = 32 choices combinations to discard.
The answer is 32.
-------------------------------
Note: There is also an equation for permutations which is:
n!/(n-r)!
Notice it is very similar to combinations. The only difference is that a permutation is an ORDERED arrangement while a combination is UNORDERED.
We used combinations rather than permutations because the order of the cards does not matter in this case. For example, we could discard the ace of spades followed by the jack of diamonds, or we could discard the jack or diamonds followed by the ace of spades. These two instances are the same combination of cards but a different permutation. We do not care about the order.
I hope this helps! If you have any questions, let me know :)
B because each input has one output
Answer:
726.572699
Step-by-step explanation:
According to differentials
(x+Δx)³ = x³ + 3x²Δx + 3x(Δx)² + (Δx)³ (Using binomial expansion)
Using this formula to solve (8.99)³, this can also be written as;
(8.99)³ = (9-0.01)³ where
x = 9
Δx = -0.01
Substitute this vales into the differential expression above
(9+(-0.01))³ = 9³ + 3(9)²(-0.01) + 3(9)(-0.01)² + (-0.01)³
(9+(-0.01))³ = 729 + (243)(-0.01) + 27(0.0001) + (-0.000001)
(9+(-0.01))³ = 729-2.43+0.0027-0.000001
(9+(-0.01))³ = 729-2.43+0.0027-0.000001
(9+(-0.01))³ = 726.572699
Hence 8.99³ = 726.572699 (Using differential)
Using calculator;
8.99³ = 726.572699
Answer:
Length of the field: 94 m
Width of the painting: 61 cm
Step-by-step explanation:
Use the perimeter formula, P = 2l + 2w, to find the length:
Plug in the perimeter and width into the equation:
P = 2l + 2w
336 = 2l + 2(74)
336 = 2l + 148
188 = 2l
94 = l
So, the length of the field is 94 m.
To find the width of the painting, use the area formula, A = lw
Plug in the area and length into the equation:
A = lw
5795 = 95w
61 = w
So, the width of the painting is 61 cm.
Length of the field: 94 m
Width of the painting: 61 cm