Answer:
100,000,000
Step-by-step explanation:
You can just add up the zeros, if that makes sense.
There are two ways to evaluate the square root of 864: using a calculator, and simplifying the root.
The first method is simplifying the root. While this doesn't give you an exact value, it reduces the number inside the root.
Find the prime factorization of 864:

Take any number that is repeated twice in the square root, and move it outside of the root:





The simplified form of √864 will be 12√6.
The second method is evaluating the root. Using a calculator, we can find the exact value of √864.
Plugged into a calculator and rounded to the nearest hundredths value, √864 is equal to 29.39. Because square roots can be negative or positive when evaluated, this means that √864 is equal to ±29.39.
Call the smaller of the two odds = n
Call the next number in the sequence = n + 2
n*(n +2) = 782 Remove the brackets.
n^2 + 2n = 782 Subract 782 from both sides.
n^2 + 2n - 782 = 0 We are going to have to factor this.
Discussion
This problem can't be done the way it is written. The product of an odd integer with another odd integer is and odd integer. There are no exceptions to this. So you need to give a number that has two factors very near it's square root for this question to work.
For example, you could use 783, (which factors) instead of 782 .
Solve
n^2 + 2n - 783 = 0
(n + 29)(x - 27) = 0
<u>Solution One</u>
n - 27 = 0
n = 27
The two odd consecutive integers are 27 and 29.
<u>Solution Two</u>
n + 29 = 0
n = - 29
The two solution integers are -29 and - 27 Notice that - 29 is smaller than - 27.
Answer:
The coordinates I chose were (0,2) and (4,5)
Step-by-step explanation:
Didn't you already do this question?
Answer:
total 1 hour 15 mins
Step-by-step explanation:
3:45 - 5:00
lets count one by one
3:45 - 4:00 = 15 mins
4:00 - 5:00 = 1 hour
total 1 hour 15 mins