Answer:
The number of oxygen molecules in the left container greater than the number of hydrogen molecules in the right container.
Explanation:
Given:
Molar mass of oxygen, 
Molar mass of hydrogen, 
We know ideal gas law as:

where:
P = pressure of the gas
V = volume of the gas
n= no. of moles of the gas molecules
R = universal gs constant
T = temperature of the gas
∵
where:
m = mass of gas in grams
M = molecular mass of the gas
∴Eq. (1) can be written as:


as: 
So,

Now, according to given we have T,P,R same for both the gases.




∴The molecules of oxygen are more densely packed than the molecules of hydrogen in the same volume at the same temperature and pressure. So, <em>the number of oxygen molecules in the left container greater than the number of hydrogen molecules in the right container.</em>
Answer:
Explanation:
A mass of 700 kg will exert a force of
700 x 9.8
= 6860 N.
Amount of compression x = 4 cm
= 4 x 10⁻² m
Force constant K = force of compression / compression
= 6860 / 4 x 10⁻²
= 1715 x 10² Nm⁻¹.
Let us take compression of r at any moment
Restoring force by spring
= k r
Force required to compress = kr
Let it is compressed by small length dr during which force will remain constant.
Work done
dW = Force x displacement
= -kr -dr
= kr dr
Work done to compress by length d
for it r ranges from 0 to -d
Integrating on both sides
W = 
= [ kr²/2]₀^-4
= 1/2 kX16X10⁻⁴
= .5 x 1715 x 10² x 16 x 10⁻⁴
= 137.20 J
That was sun as some smaller masses formed planets and other remaining formed sun