1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
3 years ago
12

What is the volume of the two combined?

Mathematics
2 answers:
sergij07 [2.7K]3 years ago
7 0
I think it is 72ft^3 because I am sure the top part is 13 x 2 x 2 since the side of it is a square, and the equals 52 

Then the bottom part is 5 x 2 x 2 which equals 20

And 52 + 20 = 72 

So the answer is 72 ft cubed or 72^3
Natalija [7]3 years ago
6 0
Jus solve them and add them together
You might be interested in
Solve for x.<br><br> x3=125<br><br> Enter your answer in the box.<br><br> x =
olchik [2.2K]

Answer:

x = 5

Step-by-step explanation:

 =(-5-√-75)/2=(-5-5i√ 3 )/2= -2.5000-4.3301i

x =(-5+√-75)/2=(-5+5i√ 3 )/2= -2.5000+4.3301i

x = 5

source tiger-algebra.com

4 0
3 years ago
Read 2 more answers
Determine and state the coordinates of the center and the length of the radius of the
zmey [24]

we can see that the center is (-3, 3) and the radius is 9 units.

<h3 /><h3>How to find the center and radius of the circle?</h3>

The general circle equation, for a circle with a center (a, b) and radius R is given by:

(x - a)^2 + (y - b)^2 = R^2

Here we have the equation:

x^2 + y^2 + 6x = 6y + 63

Let's complete squares:

x^2 + y^2 + 6x - 6y =  63

(x^2 + 6x) + (y^2 - 6y) = 63

(x^2 + 2*3x) + (y^2 - 2*3y) = 63

Now we can add and subtract 9, (two times) so we get:

(x^2 + 2*3x + 9) - 9 + (x^2 - 2*3x + 9) - 9 = 63

(x + 3)^2 + (y - 3)^2 = 63 + 9 + 9 = 81 = 9^2

(x + 3)^2 + (y - 3)^2 = 9^2

Comparing with the general circle equation, we can see that the center is (-3, 3) and the radius is 9 units.

If you want to learn more about circles:

brainly.com/question/1559324

#SPJ1

7 0
2 years ago
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\&#10;(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\&#10;(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\&#10;S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=&#10;\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\&#10;

=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}&#10;\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\&#10;S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\&#10;S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=&#10;\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\&#10;\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
Nikita has 1/3 of a kilogram of trail mix. She wants to share it equally among herself and 2 of her cousins. How much trail mix
marishachu [46]

Answer: 1/3divided by 3=x

Step-by-step explanation:

there is 1/3k of trail mix to divide among 3 people

hope this helped

plz mark brainliest so

i can rank up

;p <3

8 0
3 years ago
PLZ HELP QUICKLY!!!!!!!
Serjik [45]
To complete the square (x+2/5)^2 it would be x^2+(4/5)x+4/25
8 0
3 years ago
Read 2 more answers
Other questions:
  • Suppose you are adding 43 and 28. will you regroup??? and Explain
    15·1 answer
  • 125% of a number is 65. Find the number
    11·2 answers
  • HELP NEEDED ASAP!! PLEASE!!!
    15·1 answer
  • What values of b make it an exponential growth function
    13·2 answers
  • Please answer asap!!..
    12·2 answers
  • F-1(x) =<br> X<br> + 2<br> 4<br> This has to be graphed?
    12·1 answer
  • Which expression is equivalent to 6 + 12x?
    13·2 answers
  • What's the gcf for x^3 y^2 and xy^5
    15·2 answers
  • C.P.=RS 180 S.P. =Rs 200 solve it step by step 'I'll give u brainest'​
    9·1 answer
  • Quadrilateral MNOP is similar to quadrilateral SURT
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!