Answer:

If we increase the income by 1% that means that the new income would be 1.01 the before one and if we replace this we got:

And the net increase can be founded like this:
![Test score_f -Tet score_i = 557.8 +36.7842 Income- [557.8 +36.42 Income] = 36.7842 Income -36.42 Income = 0.3642](https://tex.z-dn.net/?f=%20Test%20score_f%20-Tet%20score_i%20%3D%20557.8%20%2B36.7842%20Income-%20%5B557.8%20%2B36.42%20Income%5D%20%3D%2036.7842%20Income%20-36.42%20Income%20%3D%200.3642)
So then the net increase would be:
C. 0.36 points
Step-by-step explanation:
For this case we have the following linear relationship obtained from least squares between test scores and the student-teacher ratio:

If we increase the income by 1% that means that the new income would be 1.01 the before one and if we replace this we got:

And the net increase can be founded like this:
![Test score_f -Tet score_i = 557.8 +36.7842 Income- [557.8 +36.42 Income] = 36.7842 Income -36.42 Income = 0.3642](https://tex.z-dn.net/?f=%20Test%20score_f%20-Tet%20score_i%20%3D%20557.8%20%2B36.7842%20Income-%20%5B557.8%20%2B36.42%20Income%5D%20%3D%2036.7842%20Income%20-36.42%20Income%20%3D%200.3642)
So then the net increase would be:
C. 0.36 points
I think you forgot to add the attachment.
The area= (20x14)/2
So, 20 times 14, divided by 2.
Answer:
Check below, please
Step-by-step explanation:
Hello!
1) In the Newton Method, we'll stop our approximations till the value gets repeated. Like this

2) Looking at the graph, let's pick -1.2 and 3.2 as our approximations since it is a quadratic function. Passing through theses points -1.2 and 3.2 there are tangent lines that can be traced, which are the starting point to get to the roots.
We can rewrite it as: 

As for

3) Rewriting and calculating its derivative. Remember to do it, in radians.


For the second root, let's try -1.5

For x=-3.9, last root.

5) In this case, let's make a little adjustment on the Newton formula to find critical numbers. Remember their relation with 1st and 2nd derivatives.



For -1.2

For x=0.4

and for x=-0.4

These roots (in bold) are the critical numbers
I would say a circle graph would be best to use