Answer:
(C) 2√15
Step-by-step explanation:
Recognize that all the triangles are right triangles, so are similar to each other. In these similar triangles, the ratio of the short side to the long side is the same for all.
... CB/CA = CT/CB
... CB² = CA·CT = 10·6 = 60 . . . . . . . . . . multiply by CA·CB; substitute values
... CB = √60 = 2√15 . . . . . . . take the square root; simplify
_____
<em>Comment on this solution</em>
The altitude to the hypotenuse of a right triangle (CB in this case) divides the hypotenuse into lengths such that the altitude is their geometric mean. That is ...
... CB = √(AC·CT) . . . . as above
This is true for any right triangle — another fact of geometry to put in your list of geometry facts.
Answer:
We know that the equation of the circle in standard form is equal to <em>(x-h)² + (y-k)² = r²</em> where (h,k) is the center of the circle and r is the radius of the circle.
We have x² + y² + 8x + 22y + 37 = 0, let's get to the standard form :
1 - We first group terms with the same variable :
(x²+8x) + (y²+22y) + 37 = 0
2 - We then move the constant to the opposite side of the equation (don't forget to change the sign !)
(x²+8x) + (y²+22y) = - 37
3 - Do you recall the quadratic identities ? (a+b)² = a² + 2ab + b². Now that's what we are trying to find. We call this process <u><em>"completing the square"</em></u>.
x²+8x = (x²+8x + 4²) - 4² = (x+4)² - 4²
y²+22y = (y²+22y+11²)-11² = (y+11)²-11²
4 - We plug the new values inside our equation :
(x+4)² - 4² + (y+22)² - 11² = -37
(x+4)² + (y+22)² = -37+4²+11²
(x+4)²+(y+22)² = 100
5 - We re-write in standard form :
(x-(-4)²)² + (y - (-22))² = 10²
And now it is easy to identify h and k, h = -4 and k = - 22 and the radius r equal 10. You can now complete the sentence :)
Answer:
no
Step-by-step explanation:
the two smaller numbers added together need to be greater than or equal to the larger number
Answer:
$240
Step-by-step explanation:
I = prt
I = (2,400) (0.04) (2.5)
note: I changed 4% to a decimal and 30 months to 2.5 years
I = 96 (2.5)
I = 240 <-- The interest
------------------------------------------------------------------------------------------------------------
The simple interest accumulated on a principal of $ 2,400.00 at a rate of 4% per year for 2.5 years (30 months) is $240.00.
---------------------------------------------------------------------------------------------------------
* Last time I did interest was in 6th grade and I don't remember much. So I am very sorry if my answer is wrong *