The similarities between bones of humans and other animals shows that every living creature on earth has a common ancestor, even if that common ancestor is as simple as a sing-celled organism.
I think the answer is (4) using large amounts of some materials that cannot be renewed :))
i hope this be helpful
* happy new year *
For radioactive materials with short half-lives, you use a very sensitive calibrated detector to measure how many counts per second it is producing. Then using the exact same set up you do the same at a latter time. You use the two readings and the time between them to determine the half-life. You don’t have to wait exactly a half-life, you can do the math with any significant time difference. Also, you don’t need to know the absolute radioactivity, as long as the set up is the same you only need to know fraction by which it changed.
For radioactive materials with long half-lives that won’t work. Instead you approach the problem differently. You precisely measure the mass of a very pure sample of the radioactive material. You can use that to calculate the number of atoms in the sample. Then you put the sample in a counter that is calibrated to determine the absolute number of disintegrations happening in a given time. Now you know how many of them are disintegrating every second. You use the following equations:
Decays per Second = (Number of Atoms) x (Decay Constant)
Half-life = (Natural Log of 2) / (Decay Constant)
And you can calculate the half-life
Hope it helps :)
Mark it as brainliest pls :)
Answer:
36 ATPs
Explanation:
Cellular respiration starts with glycolysis wherein glucose is broken down into two molecules of pyruvate. The process of glycolysis forms two molecules of ATP by substrate-level phosphorylation for each glucose molecule. Both pyruvate molecules are converted into acetyl CoA to enter into the Kreb's cycle. Kreb's cycle forms two ATP molecules by substrate-level phosphorylation. NADH and FADH2 formed during glycolysis and Kreb's cycle are oxidized by the electron transport chain. This process also forms as many as 34 ATP molecules. If acetyl CoA is not formed, the total ATP gain per glucose will be only 2 ATP molecules (from glycolysis only) which is 38-2= 36 less than the total.