Answer:
The correct answer to the following question will be "Particles".
Explanation:
- A particle seems to be a little component of something, it's little. When you're talking about a subatomic particle, that would be a structured user likely won't see because it's quite unbelievably thin, but it has a tiny mass as well as structural integrity. Such particles seem to be tinier than that of the particles or atoms.
- Such that the light which shines on the bit of metal could dissipate electrons, the particles seem to be more compatible with the light.
Answer,
For example, silver ion can be precipitated with hydrochloric acid to yield solid silver chloride. Because many cations will not react with hydrochloric acid in this way, this simple reaction can be used to separate ions that form insoluble chlorides from those that do not.
1. exercise because you are using exercise to affect the amount of concentration. 2. concentration because concentration is what is being measured
According to <span>Gay-Lussac's Law the temperature and Pressure are directly proportional to each other if the amount and volume of given gas are kept constant.
Mathematically for initial and final states it is expressed as,
P</span>₁ / T₁ = P₂ / T₂ ----- (1)
Data Given;
P₁ = 1.5 atm
T₁ = 35 °C + 273 = 308 K
P₂ = ?
T₂ = 0 °C + 273 = 273 K
Solving Eq. 1 for P₂,
P₂ = P₁ T₂ / T₁
Putting values,
P₂ = (1.5 atm × 273 K) ÷ 308 K
P₂ = 1.32 atm
Result:
As the temperature is decreased so the pressure also decreases from 1.5 atm to 1.32 atm. Therefore the bag will contract.
I found this....
Supraglacial Moraine
A supraglacial moraine is material on the surface of a glacier. Lateral and medial moraines can be supraglacial moraines. Supraglacial moraines are made up of rocks and earth that have fallen on the glacier from the surrounding landscape. Dust and dirt left by wind and rain become part of supraglacial moraines. Sometimes the supraglacial moraine is so heavy, it blocks the view of the ice river underneath.
If a glacier melts, supraglacial moraine is evenly distributed across a valley.
Ground Moraine
Ground moraines often show up as rolling, strangely shaped land covered in grass or other vegetation. They don’t have the sharp ridges of other moraines. A ground moraine is made of sediment that slowly builds up directly underneath a glacier by tiny streams, or as the result of a glacier meeting hills and valleys in the natural landscape. When a glacier melts, the ground moraine underneath is exposed.
Ground moraines are the most common type of moraine and can be found on every continent.
Terminal Moraine
A terminal moraine is also sometimes called an end moraine. It forms at the very end of a glacier, telling scientists today important information about the glacier and how it moved. At a terminal moraine, all the debris that was scooped up and pushed to the front of the glacier is deposited as a large clump of rocks, soil, and sediment.
Scientists study terminal moraines to see where the glacier flowed and how quickly it moved. Different rocks and minerals are located in specific places in the glacier’s path. If a mineral that is unique to one part of a landscape is present in a terminal moraine, geologists know the glacier must have flowed through that area.