Answer:
HNO3 + KOH → _KNO3___ + __H2O___
Explanation:
It's balanced
hope it helps
1mol ------------ 3×6,02×10²³ oxygen atoms
x ------------ 2,55×10²⁴
x = 2,5×10²⁴ × 1mol / 3×6,02×10²³ ≈ 0,138*10 mol = 1,38mol
High pressures are necessary to create such reaction so that the particles will be able to overcome electrostatic repulsion. The particles that make up a particular atom are covered by shells of energy that react to different impulses like pressure. When particles are exposed to extreme environmental pressure it has the tendency to split its particles and undergo nuclear fusion successfully.
In order to obtain solid NaCl, the student should do a few steps.
First, he/she should do filtration. Pass the mixture through a filter paper, where all the sand should be filtered out already because they're not dissolved in the solution plus they're too small to pass through the filter paper.
Next, the filtrate should be left with NaCl (aqueous state). To seperate NaCl with the liquid, the student can either do evaporation or crystallization, depending on how pure or fast he/she wants the results to be. Evaporation involves heating the beaker or whatever apparatus under the bunsen burner until all the liquid has evaporated. Then, some white powder should be left, they're NaCl solid. For crystallization, the student should just put the beaker on a room condition environment, and wait. They might have to wait a month or so for the liquid to completely evaporate itself and left with clear and pure NaCl crystals.
MW of gas : 124.12 g/mol
<h3>Further explanation </h3>
Density is a quantity derived from the mass and volume
Density is the ratio of mass per unit volume
With the same mass, the volume of objects that have a high density will be smaller than objects with a smaller type of density
The unit of density can be expressed in g/cm³ or kg/m³
Density formula:

ρ = density
m = mass
v = volume
glass vessel wieight = 50 g
glass vessel + liquid = 148 ⇒ liquid = 148 - 50 =98 g
volume of glass vessel :

An ideal gas :
m = 50.5 - 50 = 0.5 g
P = 760 mmHg = 1 atm
T = 300 K
