1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alla [95]
3 years ago
14

I Do you guys think people used energy before the modern times? Why or why not?

Physics
1 answer:
zepelin [54]3 years ago
3 0

Answer:

do you mean before we used fossil fuels? steam.before steam? fire was used for like ...125,000 years ago. we were not smart back then but we were smart enough.

Explanation:

You might be interested in
What is the thermal energy of an object?
Vedmedyk [2.9K]
The total kinetic and potential energies
3 0
4 years ago
The skateboarder has a mass of 100 kg. When traveling downward from E to D, he reaches a velocity of 11 m/s. Calculate his kinet
patriot [66]

6050 J is the kinetic energy at D

<u>Explanation:</u>

In physics, the object's kinetic energy (K.E) defined as the energy it possesses during movement. It can be defined as the required work to accelerate a certain body weight in order to rest at a certain speed. When the body receives this energy as it speeds up (accelerates), it retains this energy unless speed varies. The equation is given as,

           K . E=\frac{1}{2} \times m \times v^{2}

Where,

m - mass of an object

v - velocity of the object

Here,

Given data:

m  = 100 kg

v = 11 m/s

By substituting the given values in the above equation, we get

            K . E=\frac{1}{2} \times 100 \times(11)^{2}=\frac{1}{2} \times 100 \times 121=\frac{12100}{2}=6050\ \mathrm{J}

6 0
4 years ago
Two long, parallel wires are attracted to each other by a force per unit length of 350 µN/m. One wire carries a current of 22.5
pishuonlain [190]

Answer

given,

force per unit length = 350 µN/m

current, I = 22.5 A

y = y = 0.420 m

\dfrac{F}{L}= \dfrac{KI_1I_2}{d}

I_2 = \dfrac{F}{L}\dfrac{d}{KI_1}

I_2 = 350\times 10^{-6}\times \dfrac{0.42}{2 \times 10^{-7}\times 22.5}

    I₂ = 32.67 A

distance where the magnetic field is zero

\dfrac{4\pi \times 10^{-7}\times 32.67}{2\pi y_1}=\dfrac{4\pi \times 10^{-7}\times 22.5}{2\pi (0.42-y_1)}

y_1 = 0.248\ m

there the distance at which the magnetic field is zero in the two wire is at 0.248 m.

3 0
3 years ago
Question 3 Please, i need help! Thank you
Tom [10]
I don't know this 1 I'm sorry I can't help you 
4 0
4 years ago
Two planets A and B, where B has twice the mass of A, orbit the Sun in elliptical orbits. The semi-major axis of the elliptical
lozanna [386]

Answer:

2.83

Explanation:

Kepler's discovered that the square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit, that is called Kepler's third law of planet motion and can be expressed as:

T=\frac{2\pi a^{\frac{3}{2}}}{\sqrt{GM}} (1)

with T the orbital period, M the mass of the sun, G the Cavendish constant and a the semi major axis of the elliptical orbit of the planet. By (1) we can see that orbital period is independent of the mass of the planet and depends of the semi major axis, rearranging (1):

\frac{T}{a^{\frac{3}{2}}}=\frac{2\pi}{\sqrt{GM}}

\frac{T^{2}}{a^{3}}=(\frac{2\pi }{\sqrt{GM}})^2 (2)

Because in the right side of the equation (2) we have only constant quantities, that implies the ratio \frac{T^{2}}{a^{3}} is constant for all the planets orbiting the same sun, so we can said that:

\frac{T_{A}^{2}}{a_{A}^{3}}=\frac{T_{B}^{2}}{a_{B}^{3}}

\frac{T_{B}^{2}}{T_{A}^{2}}=\frac{a_{B}^{3}}{a_{A}^{3}}

\frac{T_{B}}{T_{A}}=\sqrt{\frac{a_{B}^{3}}{a_{A}^{3}}}=\sqrt{\frac{(2a_{A})^{3}}{a_{A}^{3}}}

\frac{T_{B}}{T_{A}}=\sqrt{\frac{2^3}{1}}=2.83

6 0
4 years ago
Read 2 more answers
Other questions:
  • A roller coaster is moving at 25m/s at the bottom of a hill. Three seconds later it reaches the top of the hill moving at 10m/s.
    14·1 answer
  • A 61.0-kg person jumps from rest off a 10.0-m-high tower straight down into the water. Neglect air resistance. She comes to rest
    11·1 answer
  • How are mass and inertia related?
    5·1 answer
  • PLEASE HELP.
    11·1 answer
  • A force of 100 newtons Is applled to a box at an angle of 36° with the horizontal. If the mass of the box Is 25 kilograms, what
    15·1 answer
  • A cat with a mass of 5.00 kg pushes on a 25.0 kg desk with a force of 50.0N to jump off. What is the force on the desk?
    7·1 answer
  • A hiker leaves her camp and walks 3.5 km in a direction of 55° south of west to the lake. After a short rest at the lake, she hi
    13·1 answer
  • Correctness the relation Where pressure=3accleration due to gravity/4pi G​
    8·1 answer
  • How are mass, distance and gpe related
    9·1 answer
  • 2. the dipole moment of a dipole in a 300-n/c electric field is initially perpendicular to the field, but it rotates so it is in
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!