Acceleration I think if I’m not mistaken
Answer:
If it is moving 34 m/s it will take 100 seconds, or 1:40 to reach 3400 meters.
Explanation:
I found this answer by dividing 3400 by 34 and converting seconds to minutes
<span> B. A person moving a ball through a stream of water</span>
A motorboat accelerates uniformly from a velocity of 6.5m/s
to the west to a velocity of 1.5m/s to the west. if its accelerate was 2.7m/s2
to the east ,
how far did it travel during the accelration? Give your
answer in units of kilometers per hour/sec. To find the acceleration of the car
we have to
<span>
1. First determine
the suitable formula for this word problem.
Which is a. A=vf-vi/t</span>
which will be
Given are: Vi= 6.5 m/s Vf= 1.5 m/s a= 2.7 m/sec2 t=1.85s
Solution:
<span>
x = v0t + ½at2</span>
<span>x = <span>16.645375 m </span></span>
Answer:
a) 0.138J
b) 3.58m/S
c) (1.52J)(I)
Explanation:
a) to find the increase in the translational kinetic energy you can use the relation

where Wp is the work done by the person and Wg is the work done by the gravitational force
By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

the change in the translational kinetic energy is 0.138J
b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

the new speed is 3.58m/s
c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

hence, the change in Er is about 1.52J times the initial rotational energy