1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NISA [10]
4 years ago
12

Find the polynomial of minimum degree, with real coefficients, zeros at

Mathematics
1 answer:
drek231 [11]4 years ago
7 0

Answer:

\huge\boxed{p(x)=4x^3-20x^2+4x+300}

Step-by-step explanation:

\text{If}\ x=4\pm3i\ \text{and}\ x=-3\ \text{are the zeros of a polynomial, then it has  a form:}\\\\p(x)=\bigg(x-(4-3i)\bigg)\bigg(x-(4+3i)\bigg)\bigg(x-(-3)\bigg)\bigg(r(x)\bigg)\\\\p(x)=(x-4+3i)(x-4-3i)(x+3)\bigg(r(x)\bigg)\\\\p(x)=\underbrace{\bigg((x-4)+3i\bigg)\bigg((x-4)-3i\bigg)}_{\text{use}\ (a+b)(a-b)=a^2-b^2}(x+3)\bigg(r(x)\bigg)\\\\p(x)=\bigg((x-4)^2-(3i)^2\bigg)(x+3)\bigg(r(x)\bigg)\qquad\text{use}\ (a-b)^2=a^2-2ab+b^2

p(x)=(x^2-2(x)(4)+4^2-3^2i^2)(x+3)\bigg(r(x)\bigg)\qquad\text{use}\ i^2=-1\\\\p(x)=(x^2-8x+16-9(-1))(x+3)\bigg(r(x)\bigg)\\\\p(x)=(x^2-8x+16+9)(x+3)\bigg(r(x)\bigg)\\\\p(x)=(x^2-8x+25)(x+3)\bigg(r(x)\bigg)\qquad\text{use FOIL}:\ (a+b)(c+d)=ac+ad+bc+bd\\\\p(x)=\bigg((x^2)(x)+(x^2)(3)+(-8x)(x)+(-8x)(3)+(25)(x)+(25)(3)\bigg)\bigg(r(x)\bigg)\\\\p(x)=(x^3+3x^2-8x^2-24x+25x+75)\bigg(r(x)\bigg)\qquad\text{combine like terms}\\\\p(x)=(x^3-5x^2+x+75)\bigg(r(x)\bigg)

\text{The y-intercept is at 300}.\\\\\text{For}\ w(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_1x+a_0\\\\\text{y-intercept is}\ a_0\\\\\text{Therefore for}\ p(x)=(x^3-5x^2+x+75)\bigg(r(x)\bigg)\\\\\text{y-intercet is}\ 75\bigg(r(x)\bigg)\\\\75\bigg(r(x)\bigg)=300\qquad\text{divide both sides by 75}\\\\r(x)=4\\\\\text{Finally:}\\\\p(x)=(x^3-5x^2+x+75)(4)\qquad\text{use the distributive property}\\\\p(x)=(x^3)(4)+(-5x^2)(4)+(x)(4)+(75)(4)\\\\p(x)=4x^3-20x^2+4x+300

You might be interested in
Help me with this two questions
Anni [7]
First question: 0

Second question: 0.94
5 0
4 years ago
Louie's recipe requires four eggs for every eight cups of flour. How
Butoxors [25]
If she needs 8 cups of flower for 4 eggs, when you could change that to needing 4 cups of flower for 2 eggs, now we know every 4 cups of flower is 2 eggs, and we already know 8 cups of flower is 4 eggs, so if we add 2 more eggs and that means 4 more cups of flower, the final answer is: 12 cups of flour is 6 eggs. To make it easier to remember, just remember if you have even numbers you can split them into pieces and just add those pieces over and over until you get it. We started with 8 cups of flour is four eggs, and if you put it to its smallest part It would be 4 cups of flower for 2 eggs, then you just have to remember how to count your 4’s and 2’s and it’s as easy as that
5 0
2 years ago
Write 8% as a fraction and as a decimal.<br> =0.08<br> .8<br> = 0.80<br> 2 – 800.0
Verdich [7]

8% as a decimal and fraction would be 0.8 and \frac{8}{10}

3 0
4 years ago
The time it takes for a planet to complete its orbit around a particular star is called the? planet's sidereal year. The siderea
BartSMP [9]

Answer:

(a) See below

(b) r = 0.9879  

(c) y = -12.629 + 0.0654x

(d) See below

(e) No.

Step-by-step explanation:

(a) Plot the data

I used Excel to plot your data and got the graph in Fig 1 below.

(b) Correlation coefficient

One formula for the correlation coefficient is  

r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}

The calculation is not difficult, but it is tedious.

(i) Calculate the intermediate numbers

We can display them in a table.

<u>    x   </u>    <u>      y     </u>   <u>       xy     </u>    <u>              x²    </u>   <u>       y²    </u>

   36       0.22              7.92               1296           0.05

   67        0.62            42.21              4489           0.40

   93         1.00            93.00           20164           3.46

 433        11.8          5699.4          233289        139.24

 887      29.3         25989.1          786769       858.49

1785      82.0        146370          3186225      6724

2797     163.0         455911         7823209    26569

<u>3675 </u>  <u> 248.0  </u>    <u>   911400      </u>  <u>13505625</u>   <u> 61504        </u>

9965   537.81     1545776.75  25569715   95799.63

(ii) Calculate the correlation coefficient

r = \dfrac{\sum{xy} - \sum{x} \sum{y}}{\sqrt{\left [n\sum{x}^{2}-\left (\sum{x}\right )^{2}\right]\left [n\sum{y}^{2} -\left (\sum{y}\right )^{2}\right]}}\\\\= \dfrac{9\times 1545776.75 - 9965\times 537.81}{\sqrt{[9\times 25569715 -9965^{2}][9\times 95799.63 - 537.81^{2}]}} \approx \mathbf{0.9879}

(c) Regression line

The equation for the regression line is

y = a + bx where

a = \dfrac{\sum y \sum x^{2} - \sum x \sum xy}{n\sum x^{2}- \left (\sum x\right )^{2}}\\\\= \dfrac{537.81\times 25569715 - 9965 \times 1545776.75}{9\times 25569715 - 9965^{2}} \approx \mathbf{-12.629}\\\\b = \dfrac{n \sum xy  - \sum x \sum y}{n\sum x^{2}- \left (\sum x\right )^{2}} -  \dfrac{9\times 1545776.75  - 9965 \times 537.81}{9\times 25569715 - 9965^{2}} \approx\mathbf{0.0654}\\\\\\\text{The equation for the regression line is $\large \boxed{\mathbf{y = -12.629 + 0.0654x}}$}

(d) Residuals

Insert the values of x into the regression equation to get the estimated values of y.

Then take the difference between the actual and estimated values to get the residuals.

<u>    x    </u>   <u>      y     </u>   <u>Estimated</u>   <u>Residual </u>

    36        0.22        -10                 10

    67        0.62          -8                  9

    93        1.00           -7                  8

   142        1.86           -3                  5

  433       11.8             19               -  7

  887     29.3             45               -16  

 1785     82.0            104              -22

2797    163.0            170               -  7

3675   248.0            228               20

(e) Suitability of regression line

A linear model would have the residuals scattered randomly above and below a horizontal line.

Instead, they appear to lie along a parabola (Fig. 2).

This suggests that linear regression is not a good model for the data.

4 0
3 years ago
Which of the following statements have the same result? Explain each step in solving each one.
LiRa [457]

f(x) = 3x +2

f(2) = 3(2) + 2 = 8

Now

f(x) = (2x -7) / 3

let f(x) = y and f(y) = x;

y = (2x -7) / 3

x = (3y + 7) / 2

So

f(y) = (3y + 7) / 2

this f(y) is the inverse of f(x); hence

f^-1 (x) = (3x + 7) / 2

Now f^-1(3) = (9+7) / 2 = 8

For the third and last part,

2y + 14 = 4y – 2

2y = 16

y = 8

<span>Hence all the three parts gives the same results.</span>
7 0
4 years ago
Other questions:
  • 500 increased by 30%
    8·1 answer
  • Can someone help me please
    7·1 answer
  • Salma withdrew $350 from her bank account in a series of 5 withdrawals.What is the average change in her account per withdrawal.
    15·1 answer
  • Find 3 consecutive integers such that the sum of the first and twice the second is 16 more than twice the third
    7·1 answer
  • Cindy selects a sample of college students. She finds a relationship between the students' scores on an impulsivity scale and th
    10·1 answer
  • Cual es la raiz cuadrada se 1234
    6·1 answer
  • Ann's car can travel 228 miles on 6 gallons of gas write an equation to represent the distance Y in miles ann's the car can trav
    13·1 answer
  • Which equation describes the
    5·2 answers
  • Identify the domain of y = 3/x + 2).
    5·1 answer
  • Question 9 and 10 <br><br> Thanks so much
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!