Answer:
2 = 64
1 = 90
3 = 10
Step-by-step explanation:
This is one possible example, remember that sides 2 and 3 must be less the 90 degrees if not it is not applicable
Let 3<em>n</em> + 1 denote the "number" in question. The claim is that
(3<em>n</em> + 1)² = 3<em>m</em> + 1
for some integer <em>m</em>.
Now,
(3<em>n</em> + 1)² = (3<em>n</em>)² + 2 (3<em>n</em>) + 1²
… = 9<em>n</em>² + 6<em>n</em> + 1
… = 3<em>n</em> (3<em>n</em> + 2) + 1
… = 3<em>m</em> + 1
where we take <em>m</em> = <em>n</em> (3<em>n</em> + 2).
Answer:
D)
Step-by-step explanation:
Answer:
Algebraically, f is even if and only if f(-x) = f(x) for all x in the domain of f. A function f is odd if the graph of f is symmetric with respect to the origin. Algebraically, f is odd if and only if f(-x) = -f(x) for all x in the domain of f brainliest ?