Answer: Taking into account sound is a wave, we can use the information of the displacement (generally given as a graph) to find the wavelength and frequency, then we can calculate the speed with the formula of the speed of a wave.
Explanation:
If we have the displacement graph of the sound wave, we can find its amplitude, its wavelength and period (which is the inverse of frequency).
Now, if we additionally have the frequency as data, we can use the equation of the speed of a wave:

Where:
is the speed of the sound wave
is the wavelength
is the frequency
Answer:
v = 54.2 m / s
Explanation:
Let's use energy conservation for this problem.
Starting point Higher
Em₀ = U = m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
m g h = ½ m v²
v² = 2gh
v = √ 2gh
Let's calculate
v = √ (2 9.8 150)
v = 54.2 m / s
PLEASE PRESS THE “Thanks!” BUTTON! :)
13 g —> 0.013 kg
KE = 1/2(m)(v)^2
KE = 1/2(0.013)(8.5)^2
KE = 0.47 J
Wavelength = velocity/frequency
wavelength = v/f
v= 13km/s = change this to m/s = 13000m/s
f= 14Hz
wavelength = 13000m/s÷14Hz =928.7 m
Answer:
The difference between a physical reaction and a chemical reaction is composition. In a chemical reaction, there is a change in the composition of the substances in question; in a physical change there is a difference in the appearance, smell, or simple display of a sample of matter without a change in composition. Although we call them physical "reactions," no reaction is actually occurring. In order for a reaction to take place, there must be a change in the elemental composition of the substance in question. Thus, we shall simply refer to physical "reactions" as physical changes from now on.
Explanation:
Physical changes are limited to changes that result in a difference in display without changing the composition. Some common changes (but not limited to) are:
Texture
Color
Temperature
Shape
Change of State (Boiling Point and Melting Point are significant factors in determining this change.)
Physical properties include many other aspects of a substance. The following are (but not limited to) physical properties.
Luster
Malleability
Ability to be drawn into a thin wire
Density
Viscosity
Solubility
Mass
Volume