Answer:
Rate of forward reaction will increase.
Explanation:
Effect of change in reaction condition on equilibrium is explained by Le Chatelier's principle. According to this principle,
If an equilibrium condition of a dynamic reversible reaction is disturbed by changing concentration, temperature, pressure, volume, etc, then reaction will move will in a direction which counteract the change.
In the given reaction,
A + B ⇌ C + D
If concentration of A is increase, then reaction will move in a direction which decreases the concentration of A to reestablish the equilibrium.
As concentration A decreases in forward direction, therefore, rate of forward reaction will increase.
Thus, sound will travel at a slower rate in the denser object. If sound waves of the same energy were passed through a block of wood and a block of steel, which is more dense than the wood, the molecules of the steel would vibrate at a slower rate. Thus, sound passes more quickly through the wood, which is less dense.
More precisely, we need to specify its position<span> relative to a convenient reference frame. .... Also you s</span>hould know<span> that some people use the subscript "0" to refer to the ... mx, </span>start<span> subscript, 0, end subscript, equals, 1, </span>point<span>, 5, space, m and her </span>final<span> ... </span>between<span> two </span>points<span>, or we </span>can<span> talk about the distance traveled by an </span>object<span>.</span>
Answer:
NaCl.
Explanation:
In the solution, ZnSe ionizes to
and
. Following reaction represents the ionization of ZnSe in solution -
⇄ 
As we want to increase the solubility of ZnSe, we must decrease the concentration of dissociated ions so that the reaction continues to forward direction.
If we add NaCl to this solution, then we have
and
in the solution which will be formed by the ionization of NaCl.
Now,
in the solution will react with two
ions to form
as follows -
⇄ 
Due to this reaction the concentration of
will decrease in the solution and more ZnSe can be soluble in the solution.