Oxidation state of I is (-1) and for CO it is zero. Let's assume that the oxidation state of Fe in Fe(CO)₄I₂<span> (s) is x. For whole compound, the charge is zero.
Sum of oxidation numbers in all elements = Charge of the compound.
Here we have 1Fe , 4CO and 2I
hence we can find the oxidation state as;
x + 4*0 + 2*(-1) = 0
x + 0 - 2 = 0
x = +2
Hence the oxidation state of Fe in product </span>Fe(CO)₄I₂ (s) is +2.
Same as we can find the oxidation state (y) of Fe in Fe(CO)₅(s).
y + 5*0 = 0
y = 0
Since oxidation state of Fe increased from 0 to +2, the oxidized element is Fe in the given reaction.
Answer: The kilograms of water must evaporate from 8kg of a 25% salt solution to produce 40% salt solution is 3 kg.
Explanation:
According to the ratio and proportion:
![C_1m_1=C_2m_2](https://tex.z-dn.net/?f=C_1m_1%3DC_2m_2)
where,
= concentration of ist solution = 25%
= mass of ist solution = 8 kg
= concentration of second solution = 40%
= mass of second solution = ? kg
![25\times 8=40\times m_2](https://tex.z-dn.net/?f=25%5Ctimes%208%3D40%5Ctimes%20m_2)
![m_2=5kg](https://tex.z-dn.net/?f=m_2%3D5kg)
Thus the final solution must have a mass of 5 kg , i.e (8-5)= 3 kg of mass must be evaporated.
Therefore, the mass that must be evaporated from 8kg of a 25% salt solution to produce 40% salt solution is 3 kg.
The balanced half reactions are
4 Fe2+ ====> 4 Fe3+ + 4 e-
<span>MnO42- + 8 H+ + 4 e- ===> Mn2+ + 4 H2O
The net ionic equation is
4 Fe2+ + </span>MnO42- + 8 H+ ===> 4 Fe3+ + Mn2+ + 4 H2O<span />
The scientist's results is that at a temperature of 35<span>°C, the solubility of the substance in water is 146.2 grams in 200 grams of water. There isn't really a different method to determine the solubility of a substance in water. Another procedure could be that a lesser amount of the substance is used and the water required to dissolve it is determined. The solubility of the substance based on the two procedures can then be compared.</span>
Answer:
2 mol NO2
Explanation:
3NO2(g)+H2O(l)→2HNO3(l)+NO(g)
from reaction 3 mol 1 mol
given 11 mol 3 mol
for 3 mol NO2 ----- 1 mol H2O
for x mol NO2 ----- 3 mol H2O
3:x = 1:3
x = 3 *3/1 = 9 mol NO2
So, for 3 mol H2O are needed only 9 mol NO2.
But we have 11 mol NO2. So, NO2 is in excess, and
11 mol NO2 - 9 mol NO2 = 2 mol NO2 will be left after reaction.