Answer:
1.5 M.
Explanation:
- Molarity (M) is defined as the no. of moles of solute dissolved in a 1.0 L of the solution.
<em>M = (no. of moles of LiBr)/(Volume of the solution (L).</em>
<em></em>
∵ no. of moles of LiBr = (mass/molar mass) of LiBr = (97.7 g)/(86.845 g/mol) = 1.125 mol.
Volume of the solution = 750.0 mL = 0.75 L.
∴ M = (no. of moles of luminol)/(Volume of the solution (L) = (1.125 mol)/(0.75 L) = 1.5 M.
Answer:
I think the right answer is c/ number of atomic orbitals
Ooooh boy alright. So, this may or may not be a limited reactant problem so we need to first find out of it is.
First, how many moles of each substance are there
the molar mass of BCl3 is <span>117.17 grams so 37.5 g / 117.17 is ~ .32 mol.
The molar mass of H2O is 18.02 so 60 / 18.02 is ~ 3.33 mol.
Now, for every 1 mole of BCl3, there are 3 moles of HCl created. Therefore, BCl3 can create ~ .96 moles.
For every 3 moles of H2O, there are 3 moles of HCl created. Therefore, HCl can create ~3.33 moles.
But, there is not enough BCl3 to support that 3.33 moles, only enough for .96 moles, therefore BCl3 is the limiting reactant. Now, to answer the question, simply multiply .96 moles by the molar mass of HCl.
.96 x 36.46 = ~35 g</span>
Answer:
68g/mol
Explanation:
The formula of ammonium sulfide is:
Ammonium sulfide = (NH₄)₂S
The molar mass of a compound is the mass in gram of one mole of the substance. In a compound, it is expressed gram formula mass or gram-molecular weight.
It is determined by the addition of the component atomic masses and then expressed in grams;
Atomic mass of N = 14, H = 1 and S = 32
(NH₄)₂S = 2[14 + 4(1)] + 32 = 36 + 32 = 68g/mol