Answer:
the answer is d
Explanation:
you get exhausted at the middle because it is steep.
 
        
                    
             
        
        
        
Answer:
Option C is correct.
The component of acceleration perpendicular to an object’s velocity tells us How the object’s direction changes.
Explanation:
This acceleration is called radial/tangential acceleration. It is the reason why a body moving in circular motion with constant velocity can be said to also be accelerating because its direction is continuously changing. The acceleration is usually directed towards the centre of the circular motion of the body or trying to throw the body off its circular motion path.
 
        
             
        
        
        
Answer:
97.5%
Explanation:
By the empirical rule (68-95-99.7),
- 68% of data are within <em>μ </em>- <em>σ</em> and <em>μ </em>+ <em>σ</em>
- 95% of data are within <em>μ </em>- 2<em>σ</em> and <em>μ </em>+ 2<em>σ</em>
- 99.7% of data are within <em>μ </em>- 3<em>σ</em> and <em>μ </em>+ 2<em>σ</em>
<em>σ </em> and <em>μ</em> are the standard deviation and the mean respectively.
From the question,
<em>μ</em> = 7.2 cm
<em>σ</em> = 0.38 cm
7.96 = 7.2 + (<em>n</em> × 0.38)
<em>n</em> = 2
Hence, 7.96 represents <em>μ </em>+ 2<em>σ</em>.
P(X < <em>μ </em>+ 2<em>σ</em>) = P(X < <em>μ</em>) + P(<em>μ</em> < X < <em>μ </em>+ 2<em>σ</em>)
P(X < <em>μ</em>) is the percentage less than the mean = 50%.
 P(<em>μ</em> < X < <em>μ </em>+ 2<em>σ</em>) is half of P(<em>μ </em>- 2<em>σ</em> < X < <em>μ </em>+ 2<em>σ</em>) = 95% ÷ 2 = 47.5%.
Considering this, for apples that are no more than 7.96 cm,
P(X < 7.96) = P(X < 7.2) + P(7.2 < X < 7.96) = 50% + 47.5% = 97.5%
<em />
 
        
             
        
        
        
The answer is 2) 1.0c. Light will always propagate through a vacuum at the speed of light “c”; even when moving at a significant fraction of the speed of light, observers will still measure this as the speed of light and the difference is resultant of time dilation.