Answer:
Amplitude—distance between the resting position and the maximum displacement of the wave
Frequency—number of waves passing by a specific point per second
Period—time it takes for one wave cycle to complete
wavelength λ - the distance between adjacent identical parts of a wave, parallel to the direction of propagation.
Tension - described as the pulling force transmitted axially by the means of a string, a cable, chain, or similar one-dimensional continuous object, or by each end of a rod, truss member, or similar three-dimensional object
Answer:
3.62m/s and 2.83m/s
Explanation:
Apply conservation of momentum
For vertical component,
Pfy = Piy
m* Vof (sin38) - m*Vgf (sin52) = 0
Divide through by m
Vof(sin38) - Vgf(sin52) = 0
Vof(sin38) = Vgf(sin52)
Vof (sin38/sin52) = Vgf
0.7813Vof = Vgf
For horizontal component
Pxf= Pxi
m* Vof (cos38) - m*Vgf (cos52) = m*4.6
Divide through by m
Vof(cos38) + Vgf(cos52) = 4.6
Recall that
0.7813Vof = Vgf
Vof(cos38) + 0.7813 Vof(cos52) = 4.6
0.7880Vof + 0.4810Vof = 4.
1.269Vof = 4.6
Vof = 4.6/1.269
Vof = 3.62m/s
Recall that
0.7813Vof = Vgf
Vgf = 0.7813 * 3.62
Vgf = 2.83m/s
Answer:
The temperature is 2541.799 K
Explanation:
The formula for black body radiation is given by the relation;
Q = eσAT⁴
Where:
Q = Rate of heat transfer 56.6
σ = Stefan-Boltzman constant = 5.67 × 10⁻⁸ W/(m²·k⁴)
A = Surface area of the cube = 6×(3.72 mm)² = 8.3 × 10⁻⁵ m²
e = emissivity = 0.288
T = Temperature
Therefore, we have;
T⁴ = Q/(e×σ×A) = 56.6/(5.67 × 10⁻⁸ × 8.3 × 10⁻⁵ × 0.288) = 4.174 × 10¹⁴ K⁴
T = 2541.799 K
The temperature = 2541.799 K.
Answer:
(a) When the resultant force is pointing along east line, the magnitude and direction of the second force is 280 N East
(b) When the resultant force is pointing along west line, the magnitude and direction of the second force is 560 N West
Explanation:
Given;
a force vector points due east,
= 140 N
let the second force = 
let the resultant of the two vectors = F
(a) When the resultant force is pointing along east line
the second force must be pointing due east


(b) When the resultant force is pointing along west line
the second force must be pointing due west and it must have a greater magnitude compared to the first force in order to have a resultant in west line.

