Answer:
The correct option is (b).
Step-by-step explanation:
The (1 - <em>α</em>)% confidence interval for population mean (<em>μ</em>) is:

The confidence interval for population mean can be computed using either the <em>z</em>-interval or <em>t</em>-interval.
The <em>t</em>-interval is used if the following conditions are satisfied:
- The population standard deviation is not known
- The sample size is large enough
- The population from which the sample is selected is normally distributed.
For computing a (1 - <em>α</em>)% confidence interval for population mean , it is necessary for the population to normally distributed if the sample selected is small, i.e.<em>n</em> < 30, because only then the sampling distribution of sample mean will be approximated by the normal distribution.
In this case the sample size is, <em>n</em> = 28 < 30.
Also it is provided that the systolic blood pressure is known to have a skewed distribution.
Since the sample is small and the population is not normally distributed, the sampling distribution of sample mean will not be approximated by the normal distribution.
Thus, no conclusion can be drawn from the 90% confidence interval for the mean systolic blood pressure.
The correct option is (b).
Answer:
19.77% of average city temperatures are higher than that of Cairo
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

What percentage of average city temperatures are higher than that of Cairo?
This is 1 subtracted by the pvalue of Z when X = 21.4.



has a pvalue of 0.8023
1 - 0.8023 = 0.1977
19.77% of average city temperatures are higher than that of Cairo
Answer:
192
Step-by-step explanation:
Multiply 3/4 by 256
Answer:
Samuel : x
wife : y
sum of their age : 2+ x : 10