Answer:
I= (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C (for a≠0)
Step-by-step explanation:
for
I= ∫x^n . e^ax dx
then using integration by parts we can define u and dv such that
I= ∫(x^n) . (e^ax dx) = ∫u . dv
where
u= x^n → du = n*x^(n-1) dx
dv= e^ax dx→ v = ∫e^ax dx = (e^ax) /a ( for a≠0 .when a=0 , v=∫1 dx= x)
then we know that
I= ∫u . dv = u*v - ∫v . du + C
( since d(u*v) = u*dv + v*du → u*dv = d(u*v) - v*du → ∫u*dv = ∫(d(u*v) - v*du) =
(u*v) - ∫v*du + C )
therefore
I= ∫u . dv = u*v - ∫v . du + C = (x^n)*(e^ax) /a - ∫ (e^ax) /a * n*x^(n-1) dx +C = = (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C
I= (x^n)*(e^ax) /a - n/a ∫ (e^ax) *x^(n-1) dx +C (for a≠0)
B = 3h . . . . . . . .given by the problem statement
A = (1/2)bh . . . . formula for the area of a triangle
486 cm² = (1/2)*(3h)*h . . . substitute given information
(2/3)*486 cm² = h² . . . . . .multiply by 2/3
√324 cm = h . . . . . . . . . . . . . .take the square root
The height is 18 cm.
The base is 3*18 = 54 cm.
Answer:
- x > -2
- n ≤ -2 or n ≥ 8
Step-by-step explanation:
<h3>1.</h3>
Add 7x-2 to both sides and collect terms.
2x +2 -6x +7x -2 > -4 -7x +7x -2
3x > -6
x > -2 . . . . . . . divide by 3
__
<h3>2.</h3>
Solve these one at a time, and form the union of the answers.
1 +7n ≤ 15 . . . .given
7n ≤ 14 . . . . . . subtract 1
n ≤ 2 . . . . . . . divide by 7
__
-2n -2 ≤ -18 . . . given
-2n ≤ -16 . . . . . add 2
n ≥ 8 . . . . . . . . divide by -2
The solution is n ≤ -2 or n ≥ 8.
Answer:
300 cm
Step-by-step explanation:
8 x 2.5 = 20
6 x 2.5 = 15
20 x 15 = 300 cm²