Answer:
55 i think
Step-by-step explanation:
The third term of the expansion is 6a^2b^2
<h3>How to determine the third term of the
expansion?</h3>
The binomial term is given as
(a - b)^4
The r-th term of the expansion is calculated using
r-th term = C(n, r - 1) * x^(n - r + 1) * y^(r - 1)
So, we have
3rd term = C(4, 3 - 1) * (a)^(4 - 3 + 1) * (-b)^(3-1)
Evaluate the sum and the difference
3rd term = C(4, 2) * (a)^2 * (-b)^2
Evaluate the exponents
3rd term = C(4, 2) * a^2b^2
Evaluate the combination expression
3rd term = 6 * a^2b^2
Evaluate the product
3rd term = 6a^2b^2
Hence, the third term of the expansion is 6a^2b^2
Read more about binomial expansion at
brainly.com/question/13602562
#SPJ1
Answer:
4x
Step-by-step explanation:


Confusing to me, sorry i cant help. I am not good with graphs.
Answer:
He has paid 5600 by the end of the year
your equation is: y=300x+2000
Step-by-step explanation:
x=12 because there is 12 months in a year
y=300(12)+2000
y=3600+2000
y=5600