1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rewona [7]
4 years ago
5

How to find the period of a wave

Physics
1 answer:
____ [38]4 years ago
5 0
The method to choose depends on what information you have, and
on what you can measure.  Here are a few possible methods:

-- Measure the period. Start your clock when one peak
of the wave passes you.  Stop the clock when the next
peak passes you.  The time between the two peaks is
the wave's period.

-- Divide the wave's wavelength by its speed.  That quotient
is the wave's period.

-- Use an electronic frequency meter to measure the wave's
frequency.  Then take its reciprocal (divide ' 1 ' by it).  The
result is the wave's period.
You might be interested in
The glowing of a neon light is caused by electrons emitting energy as they (1 point)
Lena [83]
<span>The glowing of a neon light is caused by electrons emitting energy as they </span>move from higher to lower energy levels.
5 0
4 years ago
Read 2 more answers
a stone is thrown by a person from the top of the building, which is 200m tall. at the same time, another stone is thrown with v
solniwko [45]

Answer:

The time after which the two stones meet is tₓ = 4 s

Explanation:

Given data,

The height of the building, h = 200 m

The velocity of the stone thrown from foot of the building, U = 50 m/s

Using the II equation of motion

                             S = ut + ½ gt²

Let tₓ be the time where the two stones  meet and x be the distance covered from the top of the building

The equation for the stone dropped from top of the building becomes

                            x = 0 + ½ gtₓ²

The equation for the stone thrown from the base becomes

                S - x = U tₓ - ½ gtₓ²  (∵ the motion of the stone is in opposite direction)

Adding these two equations,

                      x + (S - x) = U tₓ

                               S = U tₓ

                               200 = 50 tₓ

∴                                  tₓ = 4 s

Hence, the time after which the two stones meet is tₓ = 4 s   

6 0
3 years ago
What current flows through a 2.54cm diameter rod of pure silicon that is 20cm long when 1000V is applied?
vfiekz [6]

Answer: 0.0039\ A

Explanation:

Given

Diameter of the rod d=2.54\ cm

length of rod is l=20\ cm

Resistivity of silicon is \rho=6.4\times 10^2\ \Omega-m

cross-section of the rod A

\Rightarrow A=\dfrac{\pi d^2}{4}\\\\\Rightarrow A=\dfrac{3.142\times 2.54^2\times 10^{-4}}{4}\\\\\Rightarrow A=5.067\times 10^{-4}\ m^2

Resistance of rod is  R

\Rightarrow R=\dfrac{\rho l}{A}

\Rightarrow R=\dfrac{640\times 0.20}{5.067\times 10^{-4}}\\\\\Rightarrow R=25.26\times 10^4\ \Omega

Current is given by

\Rightarrow I=\dfrac{V}{R}\\\\\Rightarrow I=\dfrac{1000}{25.26\times 10^4}\\\\\Rightarrow I=0.0039\ A

3 0
3 years ago
A ball starts from rest. It rolls down a ramp and reaches the ground after 4 seconds. Its final velocity when it reaches the gro
Hunter-Best [27]
If it starts at rest the initial velocity is 0.
For an acceleration, a, and time, t, the velocity is v=at. Since at t=4, v=7, then a=7/4=1.75m/s^2
3 0
3 years ago
Read 2 more answers
A 392 N wheel comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at 24
alex41 [277]

Answer:

h=12.41m

Explanation:

N=392

r=0.6m

w=24 rad/s

I=0.8*m*r^{2}

So the weight of the wheel is the force N divide on the gravity and also can find momentum of inertia to determine the kinetic energy at motion

N=m*g\\m=\frac{N}{g}\\m=\frac{392N}{9.8\frac{m}{s^{2}}}

m=40kg

moment of inertia

M_{I}=0.8*40.0kg*(0.6m} )^{2}\\M_{I}=11.5 kg*m^{2}

Kinetic energy of the rotation motion

K_{r}=\frac{1}{2}*I*W^{2}\\K_{r}=\frac{1}{2}*11.52kg*m^{2}*(24\frac{rad}{s})^{2}\\K_{r}=3317.76J

Kinetic energy translational

K_{t}=\frac{1}{2}*m*v^{2}\\v=w*r\\v=24rad/s*0.6m=14.4 \frac{m}{s}\\K_{t}=\frac{1}{2}*40kg*(14.4\frac{m}{s})^{2}\\K_{t}=4147.2J

Total kinetic energy  

K=3317.79J+4147.2J\\K=7464.99J

Now the work done by the friction is acting at the motion so the kinetic energy and the work of motion give the potential work so there we can find height

K-W=E_{p}\\7464.99-2600J=m*g*h\\4864.99J=m*g*h\\h=\frac{4864.99J}{m*g}\\h=\frac{4864.99J}{392N}\\h=12.41m

6 0
4 years ago
Other questions:
  • Two blocks, with masses m and 3m , are attached to the ends of a string with negligible mass that passes over a pulley, as shown
    7·1 answer
  • Please need help on this
    14·1 answer
  • Which of Newton’s laws accounts for the following statement? Negative acceleration is proportional to applied braking force
    7·1 answer
  • Can yall please help!!
    5·1 answer
  • A 1000 kg red car traveling at 40 m/s rear ends a 3000 kg blue car traveling at 35 m/s. the cars bounce off each other and the b
    10·1 answer
  • Wts the average velocity​
    11·1 answer
  • Introduction to conductors and insulators and electrification processes. Please
    12·1 answer
  • What are the differences between balloon framing and platform framing? What are the advantages and disadvantages of each? Why ha
    6·1 answer
  • A 0.25-kilogram ball is observed to accelerate at 4,000 m/sec2 as it is hit with a bat.
    7·1 answer
  • If an ocean wave has a wavelength of 2 m and a frequency of 1 wave/s, then its speed is m/s Enter the answer Check it CRATCHPAD
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!