Answer:
soundproofing or absorbing
Explanation:
Acoustics is the study of waves, vibrations and sound and its most common applications lie in the sound and noise control industries. Acoustic protection is the application of soft and porous material to protect individuals against undesirable sounds and noises.
cushioned seats and carpeted floors are used in soundproofing to block the unwanted noise and sound.
The Cheapest Ways To Soundproof A Room
1. Rugs:
Rugs make excellent vibration dampeners.
2. Weather Stripping:
If you know that sound is getting into your room via the door or the windows then a very cheap and effective solution can be to use weather stripping.
3. Blankets.
4. Curtains.
5. Egg Cartons.
Homemade Soundproofing Panels
The magnitudes of the forces that the ropes must exert on the knot connecting are :
- F₁ = 118 N
- F₂ = 89.21 N
- F₃ = 57.28 N
<u>Given data :</u>
Mass ( M ) = 12 kg
∅₂ = 63°
∅₃ = 45°
<h3>Determine the magnitudes of the forces exerted by the ropes on the connecting knot</h3><h3 />
a) Force exerted by the first rope = weight of rope
∴ F₁ = mg
= 12 * 9.81 ≈ 118 kg
<u>b) Force exerted by the second rope </u>
applying equilibrium condition of force in the vertical direction
F₂ sin∅₂ + F₃ sin∅₃ - mg = 0 ---- ( 1 )
where: F₃ = ( F₂ cos∅₂ / cos∅₃ ) --- ( 2 ) applying equilibrium condition of force in the horizontal direction
Back to equation ( 1 )
F₂ = [ ( mg / cos∅₂ ) / tan∅₂ + tan∅₃ ]
= [ ( 118 / cos 63° ) / ( tan 63° + tan 45° ) ]
= 89.21 N
<u />
<u>C ) </u><u>Force </u><u>exerted by the</u><u> third rope </u>
Applying equation ( 2 )
F₃ = ( F₂ cos∅₂ / cos∅₃ )
= ( 89.21 * cos 63 / cos 45 )
= 57.28 N
Hence we can conclude that The magnitudes of the forces that the ropes must exert on the knot connecting are :
F₁ = 118 N, F₂ = 89.21 N, F₃ = 57.28 N
Learn more about static equilibrium : brainly.com/question/2952156
<h2>
Answer: U-238</h2>
Explanation:
Let's begin by explaining that for radioactive geological dating (also called radioisotope dating) in which radioactive impurities were selectively incorporated when the fossil materials were formed, it is very useful to compare it with a naturally occurring radioisotope having a known half-life.
Now, taking into account that the <u>fossils are millions and millions of years old, radioisotopes are needed that exceed this measure.
</u>
To understand it better:
The longer the half-life of a radioisotope, the greater its utility for estimating fossil ages or geological formations.
In this sense, uranium-238 (U238) has a half-life of 4,470 million years, therefore, it is among the most commonly used radioisotopes for fossil and geological dating.
More energy is released in nuclear reactions than in chemical reactions; this is because in nuclear reactions, mass is converted to energy. Nuclear energy released in nuclear fission and fusion is several 100 million times as large as an ordinary chemical reaction like the combustion process. The reason why nuclear energy release so much energy is because tremendous amounts of energy is released at one time. The nuclei in a nuclear reaction undergo a chain reaction, causing the neutrons to move extremely fast and release high amounts of energy.
Answer:
0.000225 m
Explanation:
Coefficient of linear expansion = 
Length = 0.3 meters
ΔT = Change in temperature = 250 °C
Linear expansion

Change in length of the Pyrex glass dish is 0.000225 m.