I have to form a couple of equations in order to solve it.
let the amount of soybean in the mixture be x and that of cornmeal be y
Step-by-step explanation:
x+y = 280
y = 280 - x
x*(14/100) + y*(7/100) = 280*(12/100)
Multiplying the whole equation by 100;
14x + 7y = 3360
in this equation,put y = 280 - x
14x +7 (280-x) = 3360
14x +1960 - 7x = 3360
14x - 7x = 3360 - 1960
7x = 1400
x = 200lbs
y = 280 - x
= 280 - 200
= 80 lbs
Inorder to make a 280lbs mixture having 12% protein, we should mix 200lbs of soyabean and 80 lbs of cornmeal
I believe the answer is:
2b x (b-3) x (b+3)
36(3.14) = 4/3 x 3.14 x r^3
113.04 = 4.187(r^3)
113.04/4.187 = r^3
26.997 = r^3
3√26.997 = r
r = ~3
Check: 3^3(

)(4/3) = 27(3.14)(4/3) = 113.04
(1 - 2x)⁴
(1 - 2x)(1 - 2x)(1 - 2x)(1 - 2x)
[1(1 - 2x) - 2x(1 - 2x)][1(1 - 2x) - 2x(1 - 2x)]
[1(1) - 1(2x) - 2x(1) - 2x(-2x)][1(1) - 1(2x) - 2x(1) - 2x(-2x)]
(1 - 2x - 2x + 4x²)(1 - 2x - 2x + 4x²)
(1 - 4x + 4x²)(1 - 4x + 4x²)
1(1 - 4x + 4x²) - 4x(1 - 4x + 4x²) + 4x²(1 - 4x + 4x²)
1(1) - 1(4x) + 1(4x²) - 4x(1) - 4x(-4x) - 4x(4x²) + 4x²(1) - 4x²(4x) + 4x²(4x²)
1 - 4x + 4x² - 4x + 16x² - 16x³ + 4x² - 16x³ + 16x⁴
1 - 4x - 4x + 4x² + 16x² + 4x² - 16x³ - 16x³ + 16x⁴
1 - 8x + 24x² - 32x³ + 16x⁴