1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maurinko [17]
3 years ago
6

4.9 g = kg convert answer it plz

Mathematics
2 answers:
laiz [17]3 years ago
8 0

Answer:

0.0049

Step-by-step explanation:

pishuonlain [190]3 years ago
4 0
ANSWER

4.9g = 0.0049kg.

EXPLANATION

We want to convert 4.9 grams to kilograms.

Recall that:

1000 grams makes 1 kilograms.

To convert from grams to kilograms, we divode by 1000.

This implies that;

4.9g= \frac{4.9}{1000} kg

4.9g = 0.0049kg
You might be interested in
"!I NEED HELP WITH MY MATH PROBLEMS, PLEASE!" (27 POINTS)
Len [333]
25. yes it's direct variation
26. yes

5 0
3 years ago
Read 2 more answers
if 6 people share 990 grams of cookie but each leave behind 27 grams how much grams did each person eat
evablogger [386]

Answer: 276 grams.

Step-by-step explanation:

7 0
2 years ago
What is the measure of ∠DAB? Enter your answer in the box. ° quadrilateral a b c d with side a b parallel to side b c and side a
charle [14.2K]

Answer: The measure of angle ∠DAB is 84


Step-by-step explanation:


Step 1:     96 + 96 = 192


Step 2:    360 - 192 = 168

Step 3:     168 / 2 = 84

7 0
4 years ago
Read 2 more answers
The Y-intercept (b0) represents the a. variation around the sample regression line. b. change in estimated Y per unit change in
inn [45]
Answer: I don’t honestly know. I just need points

Explanation:
3 0
3 years ago
Need help please its Calculus. Ill give the 5 stars as well.
algol13

Answer:

\displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations
  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables
  • Solving Differentials

Integrals

  • Antiderivatives

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Logarithmic Integration:                                                                                            \displaystyle \int {\frac{1}{u}} \, dx = ln|u| + C

Step-by-step explanation:

*Note:  

When solving differential equations in slope fields, disregard the integration constant C for variable y.

<u />

<u>Step 1: Define</u>

\displaystyle \frac{dy}{dx} = x^2(y - 1)

\displaystyle f(0) = 3

<u>Step 2: Rewrite</u>

<em>Separation of Variables. Get differential equation to a form where we can integrate both sides and rewrite Leibniz Notation.</em>

  1. [Separation of Variables] Rewrite Leibniz Notation:                                      \displaystyle dy = x^2(y - 1) \ dx
  2. [Separation of Variables] Isolate <em>y</em>'s together:                                               \displaystyle \frac{1}{y - 1} \ dy = x^2 \ dx

<u>Step 3: Find General Solution Pt. 1</u>

  1. [Differential] Integrate both sides:                                                                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \int {x^2} \, dx
  2. [dx Integral] Integrate [Integration Rule - Reverse Power Rule]:                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \frac{x^3}{3} + C

<u>Step 4: Find General Solution Pt. 2</u>

<em>Identify variables for u-substitution for dy.</em>

  1. Set:                                                                                                                    \displaystyle u = y - 1
  2. Differentiate [Basic Power Rule]:                                                                     \displaystyle du = dy

<u>Step 5: Find General Solution Pt. 3</u>

  1. [dy Integral] U-Substitution:                                                                             \displaystyle \int {\frac{1}{u}} \, du = \frac{x^3}{3} + C
  2. [dy Integral] Integrate [Logarithmic Integration]:                                            \displaystyle ln|u| = \frac{x^3}{3} + C
  3. [Equality Property] e both sides:                                                                     \displaystyle e^\bigg{ln|u|} = e^\bigg{\frac{x^3}{3} + C}
  4. Simplify:                                                                                                             \displaystyle |u| = Ce^\bigg{\frac{x^3}{3}}
  5. Rewrite:                                                                                                             \displaystyle u = \pm Ce^\bigg{\frac{x^3}{3}}
  6. Back-Substitute:                                                                                               \displaystyle y - 1 = \pm Ce^\bigg{\frac{x^3}{3}}
  7. [Equality Property] Isolate <em>y</em>:                                                                            \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

General Form:  \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

<u>Step 6: Find Particular Solution</u>

  1. Substitute in function values [General Form]:                                                \displaystyle 3 = \pm Ce^\bigg{\frac{0^3}{3}} + 1
  2. Simplify:                                                                                                             \displaystyle 3 = \pm C + 1
  3. [Equality Property] Isolate <em>C</em>:                                                                           \displaystyle 2 = \pm C
  4. Rewrite:                                                                                                             \displaystyle C = 2
  5. Substitute in <em>C</em> [General Form]:                                                                       \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

∴ our particular solution is  \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e  

6 0
3 years ago
Other questions:
  • For which value of x are the two figures similar <br> 15 <br> 50 <br> 60 <br> 80
    10·2 answers
  • The hypotenuse of a 45°-45°-90° triangle measures units.
    14·2 answers
  • Marco took out an unsubsidized student loan for $20,000 which he will start paying in four years after he graduates if the inter
    12·1 answer
  • To address a falling GDP, a government may:
    8·1 answer
  • What is the product of 8.2 × 109 and 4.5 × 10-5 in scientific notation?
    15·2 answers
  • Which point is located at (4, -2)?
    8·1 answer
  • I need the answer please
    11·1 answer
  • When voting for school mascot 80 students voted for Eagle and 160 students voted for a bulldog rounded to the nearest whole perc
    10·1 answer
  • Mrs. Oliver drew a box plot to represent her students’ scores on a mid-term test.
    11·1 answer
  • PLEASE HELP?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!