1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BARSIC [14]
3 years ago
7

I will name you the brainliest ! Which point represents -(-10) on the number line?

Mathematics
2 answers:
earnstyle [38]3 years ago
8 0

Answer:

E

Step-by-step explanation:

  1. When you subtract a negative, it is the same thing as adding a positive
  2. So, -(-10) = 10
  3. E = 10, so E is the correct answer

I hope this helps!

Anna007 [38]3 years ago
4 0

Answer:

e

Step-by-step explanation:

You might be interested in
5x – 6 < 9 :P porfavore
Nikitich [7]

Answer:

x

Step-by-step explanation:

Treat this the same way you would an equation. Isolate the variable. Add 6 to both sides:

5x-6+6

Divide both sides by 5:

\frac{5x}{5}

The value of x is less than 3.

:Done

3 0
3 years ago
Read 2 more answers
Given the functionf ( x ) = x^2 + 7 x + 10/ x^2 + 9 x + 20
vladimir1956 [14]

<em>x = -4 is a vertical asymptote for the function.</em>

<h2>Explanation:</h2>

The graph of y=f(x) is a vertical has an asymptote at x=a if at least one of the following statements is true:

1) \ \underset{x\rightarrow a^{-}}{lim}f(x)=\infty\\ \\ 2) \ \underset{x\rightarrow a^{-}}{lim}f(x)=-\infty \\ \\ 3) \ \underset{x\rightarrow a^{+}}{lim}f(x)=\infty \\ \\ 4) \ \underset{x\rightarrow a^{+}}{lim}f(x)=\infty

The function is:

f(x)=\frac{x^2+7x+10}{x^2+9x+20}

First of all, let't factor out:

f(x)=\frac{x^2+5x+2x+10}{x^2+5x+4x+20} \\ \\ f(x)=\frac{x(x+5)+2(x+5)}{x(x+5)+4(x+5)} \\ \\ f(x)=\frac{(x+5)(x+2)}{(x+5)(x+4)} \\ \\ f(x)=\frac{(x+2)}{(x+4)}, \ x\neq  5

From here:

\bullet \ When \ x \ approaches \ -4 \ on \ the \ right: \\ \\ \underset{x\rightarrow -4^{+}}{lim}\frac{(x+2)}{(x+4)}=? \\ \\ \underset{x\rightarrow -4^{+}}{lim}\frac{(-4^{+}+2)}{(-4^{+}+4)} \\ \\ \\ The \ numerator \ is \ negative \ and \ the \ denominator \\ is \ a \ small \ positive \ number. \ So: \\ \\ \underset{x\rightarrow -4^{+}}{lim}\frac{(x+2)}{(x+4)}=-\infty

\bullet \ When \ x \ approaches \ -4 \ on \ the \ left: \\ \\ \underset{x\rightarrow -4^{-}}{lim}\frac{(x+2)}{(x+4)}=? \\ \\ \underset{x\rightarrow -4^{-}}{lim}\frac{(-4^{-}+2)}{(-4^{-}+4)} \\ \\ \\ The \ numerator \ is \ a \ negative \ and \ the \ denominator \\ is \ a \ small \ negative \ number \ too. \ So: \\ \\ \underset{x\rightarrow -4^{-}}{lim}\frac{(x+2)}{(x+4)}=+\infty

Accordingly:

x=-4 \ is \ a \ vertical \ asymptote \ for \\ \\ f(x)=\frac{x^2+5x+2x+10}{x^2+5x+4x+20}

<h2>Learn more:</h2>

Vertical and horizontal asymptotes: brainly.com/question/10254973

#LearnWithBrainly

5 0
4 years ago
find the orthogonal projection of v= [19,12,14,-17] onto the subspace W spanned by [ [ -4,-1,-1,3] ,[ 1,-4,4,3] ] proj w (v) = [
12345 [234]
<h2>Answer:</h2>

Hence, we have:

proj_W(v)=[\dfrac{464}{21},\dfrac{167}{21},\dfrac{71}{21},\dfrac{-131}{7}]

<h2>Step-by-step explanation:</h2>

By the orthogonal decomposition theorem we have:

The orthogonal projection of a vector v onto the subspace W=span{w,w'} is given by:

proj_W(v)=(\dfrac{v\cdot w}{w\cdot w})w+(\dfrac{v\cdot w'}{w'\cdot w'})w'

Here we have:

v=[19,12,14,-17]\\\\w=[-4,-1,-1,3]\\\\w'=[1,-4,4,3]

Now,

v\cdot w=[19,12,14,-17]\cdot [-4,-1,-1,3]\\\\i.e.\\\\v\cdot w=19\times -4+12\times -1+14\times -1+-17\times 3\\\\i.e.\\\\v\cdot w=-76-12-14-51=-153

w\cdot w=[-4,-1,-1,3]\cdot [-4,-1,-1,3]\\\\i.e.\\\\w\cdot w=(-4)^2+(-1)^2+(-1)^2+3^2\\\\i.e.\\\\w\cdot w=16+1+1+9\\\\i.e.\\\\w\cdot w=27

and

v\cdot w'=[19,12,14,-17]\cdot [1,-4,4,3]\\\\i.e.\\\\v\cdot w'=19\times 1+12\times (-4)+14\times 4+(-17)\times 3\\\\i.e.\\\\v\cdot w'=19-48+56-51\\\\i.e.\\\\v\cdot w'=-24

w'\cdot w'=[1,-4,4,3]\cdot [1,-4,4,3]\\\\i.e.\\\\w'\cdot w'=(1)^2+(-4)^2+(4)^2+(3)^2\\\\i.e.\\\\w'\cdot w'=1+16+16+9\\\\i.e.\\\\w'\cdot w'=42

Hence, we have:

proj_W(v)=(\dfrac{-153}{27})[-4,-1,-1,3]+(\dfrac{-24}{42})[1,-4,4,3]\\\\i.e.\\\\proj_W(v)=\dfrac{-17}{3}[-4,-1,-1,3]+(\dfrac{-4}{7})[1,-4,4,3]\\\\i.e.\\\\proj_W(v)=[\dfrac{68}{3},\dfrac{17}{3},\dfrac{17}{3},-17]+[\dfrac{-4}{7},\dfrac{16}{7},\dfrac{-16}{7},\dfrac{-12}{7}]\\\\i.e.\\\\proj_W(v)=[\dfrac{464}{21},\dfrac{167}{21},\dfrac{71}{21},\dfrac{-131}{7}]

6 0
3 years ago
The slope of a line is 1/2. What is the slope of a line that is perpendicular to this line? Type a numerical answer in the space
Alex17521 [72]
Perpendicular lines have negative reciprocal slopes. So if 1 slope has a slope of 1/2, then its perpendicular line has a slope of -2/1 or just -2
4 0
3 years ago
Read 2 more answers
Factor x2 - 8x + 15.
mixer [17]

Answer: (x-5)(x-3)

Factor x^2-8 x + 15 using the AC method.

5 0
3 years ago
Read 2 more answers
Other questions:
  • Suppose Y varies directly with x, and y = 25 when x = 140. what is the value of x when y = 36?
    10·1 answer
  • The graph shows the relationship between the United States dollar and the euro, the currency of the European Union, in December
    15·1 answer
  • 2 + 2 - 1<br><br>I really need help​
    5·1 answer
  • Find the sum 51.2 x 9.08
    11·2 answers
  • Simplify 48÷(-12).Please answer fast someone thx.
    15·2 answers
  • The sum of the 13th square number and the 4th cube number?
    15·1 answer
  • The coordinates
    8·1 answer
  • Help I will rate 5 starts and give u brainly
    8·2 answers
  • Which graph represents a relation that is also a function?<br> ( look at the graph and help me pls )
    8·1 answer
  • A pool has 3,500 gallons of water in it. it is draining at a rate of 30 gallons per minute and is now left with 25 gallons. how
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!