Answer:
A
Step-by-step explanation:
(pwease give brainliest :)
Answer:
n=1849
Step-by-step explanation:
Previous concepts
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The population proportion have the following distribution
Solution to the problem
In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 99% of confidence, our significance level would be given by
and
. And the critical value would be given by:
The margin of error for the proportion interval is given by this formula:
(a)
And on this case we have that
and we are interested in order to find the value of n, if we solve n from equation (a) we got:
(b)
Assuming that the proportion is estimated
. And replacing into equation (b) the values from part a we got:
And rounded up we have that n=1849
The inequality is used to solve how many hours of television Julia can still watch this week is 
The remaining hours of TV Julia can watch this week can be expressed is 3.5 hours
<h3><u>Solution:</u></h3>
Given that Julia is allowed to watch no more than 5 hours of television a week
So far this week, she has watched 1.5 hours
To find: number of hours Julia can still watch this week
<em>Let "x" be the number of hours Julia can still watch television this week</em>
"no more than 5" means less than or equal to 5 ( ≤ 5 )
Juila has already watched 1.5 hours. So we can add 1.5 hours and number of hours Julia can still watch television this week which is less than or equal to 5 hours
number of hours Julia can still watch television this week + already watched ≤ Total hours Juila can watch

Thus the above inequality is used to solve how many hours of television Julia can still watch this week.
Solving the inequality,

Thus Julia still can watch Television for 3.5 hours
Answer:
138.16 m
Step-by-step explanation:
Circumference=2πr
r=22
C=2·3.14·22
C=138.16