To solve this problem we can use following equation.
v =u + at
Where v is the final velocity (m/s), u is the initial velocity (m/s), a is the acceleration (m/s²) and t is the time taken (s).
v = 7 m/s
u = 4 m/s
a = ?
t = 5 s
By applying the equation, we can get
7 m/s = 4 m/s + a x 5 s
3 m/s = a x 5 s
a = 0.6 m/s²
Hence, the acceleration is 0.6 m/s² towards north.
Answer is "C".
Answer: hre
Explanation:
N2(g) + 3H2-> 2NH3(g) This is the balanced equation
Note the mole ratio between N2, H2 and NH3. It is 1 : 3 : 2 This will be important.
moles N2 present = 28.0 g N2 x 1 mole N2/28 g = 1 mole N2 present
moles H2 present = 25.0 g H2 x 1 mole H2/2 g = 12.5 moles H2 present
Based on mole ratio, N2 is limiting in this situation because there is more than enough H2 but not enough N2.
moles NH3 that can be produced = 1 mole N2 x 2 moles NH3/mole N2 = 2 moles NH3 can be produced
grams of NH3 that can be produced = 2 moles NH3 x 17 g/mole = 34 grams of NH3 can be produced
NOTE: The key to this problem is recognizing that N2 is limiting, and therefore limits how much NH3 can be produced.
B, water and ice are the main causes .
Answer:
The Number of gold atoms are =
Explanation:
The formula we are going to use is:

Where:
are number of gold atoms.
is Avogadro Number.
is the amount of gold.
is the atomic weight of gold.
is the density of gold.
is the density of silver.
is the amount of silver.

The Number of gold atoms are =