Answer:
FeCl₃
Explanation:
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7moles 9moles
A simple way to determine which reagent is the limiting reactant is to convert all given data to moles then divide by the respective coefficients of the balanced equation. The smaller value will be the limiting reactant.
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7/4 = 1.75* 9/3 = 3
*Smaller value => FeCl₃ is limiting reactant.
NOTE: However, when working problems, one must use original mole values given.
Answer:
90.99 or 91.0
Explanation:
Using the balanced equation, you convert 38.5g of ethanol to moles of water. From there, you plug the values into the Ideal Gas Equation: PV=nRT.
Answer:
This question will be answered based on general understanding of how a controlled experiment should be:
The answer is: We must make sure we are testing/changing only one variable, and controling others
Explanation:
A controlled experiment is an experiment in which the independent variable is changed for a particular group called the EXPERIMENTAL group and unchanged for another group called the CONTROL group.
In a controlled experiment, only one variable should be tested while the others should be kept constant in order to have an effective result or outcome. This is the case in this question, the type of music or soil should be unchanged for each plant because the experimenter must make sure that he/she is testing/changing only one variable, and controling others.
Answer:
Ethane would have a higher boiling point.
Explanation:
In this case, for the lewis structures, we have to keep in mind that all atoms must have <u>8 electrons</u> (except hydrogen). Additionally, each carbon would have <u>4 valence electrons</u>, with this in mind, for methane we have to put the hydrogens around the carbon, and with this structure, we will have 8 electrons for the carbon. In ethane, we will have a bond between the carbons, therefore we have to put three hydrogens around each carbon to obtain 8 electrons for each carbon.
Now, the main difference between methane and ethane is an <u>additional carbon</u>. In ethane, we have an additional carbon, therefore due to this additional carbon, we will have <u>more area of interaction</u> for ethane. If we have more area of interaction we have to give <u>more energy</u> to the molecule to convert from liquid to gas, so, the ethane will have a higher boiling point.
I hope it helps!
The answer is [OH⁻] = 1 x 10⁻⁸.
To find OH⁻, divide the ionic product of water by [H₃O⁺] as :
<u>OH⁻ + H₃O⁺ = H₂O</u>
<u />
- [OH⁻] = 1 x 10⁻¹⁴ / 1 x 10⁻⁶
- [OH⁻] = 1 x 10⁻⁸