Answer:
https://www.calculator.net/mean-median-mode-range-calculator.html
Step-by-step explanation:
use this website it helps so much
Answer:
54.87
69.08
Step-by-step explanation:
So... hmm bear in mind, when the boat goes upstream, it goes against the stream, so, if the boat has speed rate of say "b", and the stream has a rate of "r", then the speed going up is b - r, the boat's rate minus the streams, because the stream is subtracting speed as it goes up
going downstream is a bit different, the stream speed is "added" to boat's
so the boat is really going faster, is going b + r
notice, the distance is the same, upstream as well as downstream
thus
![\bf \begin{cases} b=\textit{rate of the boat}\\ r=\textit{rate of the river} \end{cases}\qquad thus \\\\\\ \begin{array}{lccclll} &distance&rate&time(hrs)\\ &----&----&----\\ upstream&48&b-r&4\\ downstream&48&b+4&3 \end{array} \\\\\\ \begin{cases} 48=(b-r)(4)\to 48=4b-4r\\\\ \frac{48-4b}{-4}=r\\ --------------\\ 48=(b+r)(3)\\ -----------------------------\\\\ thus\\\\ 48=\left[ b+\left(\boxed{\frac{48-4b}{-4}}\right) \right] (3) \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0Ab%3D%5Ctextit%7Brate%20of%20the%20boat%7D%5C%5C%0Ar%3D%5Ctextit%7Brate%20of%20the%20river%7D%0A%5Cend%7Bcases%7D%5Cqquad%20thus%0A%5C%5C%5C%5C%5C%5C%0A%0A%5Cbegin%7Barray%7D%7Blccclll%7D%0A%26distance%26rate%26time%28hrs%29%5C%5C%0A%26----%26----%26----%5C%5C%0Aupstream%2648%26b-r%264%5C%5C%0Adownstream%2648%26b%2B4%263%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0A%0A%5Cbegin%7Bcases%7D%0A48%3D%28b-r%29%284%29%5Cto%2048%3D4b-4r%5C%5C%5C%5C%0A%5Cfrac%7B48-4b%7D%7B-4%7D%3Dr%5C%5C%0A--------------%5C%5C%0A48%3D%28b%2Br%29%283%29%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Athus%5C%5C%5C%5C%0A48%3D%5Cleft%5B%20b%2B%5Cleft%28%5Cboxed%7B%5Cfrac%7B48-4b%7D%7B-4%7D%7D%5Cright%29%20%5Cright%5D%20%283%29%0A%5Cend%7Bcases%7D)
solve for "r", to see what the stream's rate is
what about the boat's? well, just plug the value for "r" on either equation and solve for "b"
When two variables have a positive linear correlation, the dependent variable increases as the independent variable increases. So when the independent variable decreases, the dependent variable decreases as well. Both variables decrease and increase simultaneously.
Answer:
12
Step-by-step explanation:
You would substitute
4(4)-4
then simplify
16-4
then subtract
12