1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren [92.7K]
3 years ago
9

Ship collisions in the Houston Ship Channel are rare. Suppose the number of collisions are Poisson distributed, with a mean of 1

.2 collisions every four months. Appendix A Statistical Tables (Round your answers to 4 decimal places.) a. What is the probability of having no collisions occur over a four-month period? b. What is the probability of having exactly two collisions in a two-month period? c. What is the probability of having one or fewer collisions in a six-month period?
Mathematics
1 answer:
alexandr1967 [171]3 years ago
7 0

Answer:

a) \simeq 0.3012   b) \simeq 0.0494 c) \simeq 0.2438

Step-by-step explanation:

Rate of collision,

1.2 collisions every 4 months

or, \frac{1.2}{4}

= 0.3 collisions per  month

So, the Poisson distribution for the random variable no. of collisions per month (X) is given by,

          P(X =x) = \frac{e^{-\lambda}\times {\lambda}^{x}}}{x!}


                                                           for x ∈ N ∪ {0}

                       =  0 otherwise --------------------------------------(1)

here, \lambda = 0.3 collision / month

No collision over a 4 month period means no collision per month or X =0

Putting X = 0 in (1) we get,

         P(X = 0) = \frac{e^{-0.3}\times {\0.3}^{0}}{0!}


                      \simeq 0.7408182207 ------------------------------------(2)

Now, since we are calculating  this for 4 months,

so, P(No collision in 4 month period)

     =0.7408182207^{4}

     \simeq 0.3012  -----------------------------------------------------------(3)

2 collision in 2 month period means 1 collision per month or X =1

Putting X =1 in (1) we get,

           P(X =1) = \frac{e^{-0.3}\times {\0.3}^{1}}{1!}


                      \simeq 0.2222454662 ------------------------------------(4)

Now, since we are calculating this for 2 months, so ,

P(2 collisions in 2 month period)

                =0.2222454662^{2}

                \simeq 0.0494 -----------------------------------------(5)

1 collision in 6 months period means

                                \frac{1}{6} collision per month

Now, P(1 collision in 6 months period)

= P( X = 1/6]  (which is to be estimated)

=\frac {P(X=0)\times 5 + P(X =1)\times 1}{6}

= \frac {0.7408182207 \times 5 + 0.2222454662 \times 1}{6}[/tex]

\simeq 0.6543894283-------------------------------------------(6)

So,

P(1  collision in 6 month period)

  =  0.6543894283^{6}

   \simeq 0.0785267444 ------------------------------------------------(7)

So,

P(No collision in 6 months period)

  = (P(X =0)^{6}

   \simeq 0.1652988882 ---------------------------------(8)

so,

P(1 or fewer collision in 6 months period)

= (8) + (7 ) = 0.0785267444 +0.1652988882

\simeq  0.2438 ---------------------------------------------(9)          

You might be interested in
Please please help!!
shepuryov [24]

Answer:

\large\boxed{x=0\ and\ x=\pi}

Step-by-step explanation:

\tan^2x\sec^2x+2\sec^2x-\tan^2x=2\\\\\text{Use}\ \tan x=\dfrac{\sin x}{\cos x},\ \sec x=\dfrac{1}{\cos x}:\\\\\left(\dfrac{\sin x}{\cos x}\right)^2\left(\dfrac{1}{\cos x}\right)^2+2\left(\dfrac{1}{\cos x}\right)^2-\left(\dfrac{\sin x}{\cos x}\right)^2=2\\\\\left(\dfrac{\sin^2x}{\cos^2x}\right)\left(\dfrac{1}{\cos^2x}\right)+\dfrac{2}{\cos^2x}-\dfrac{\sin^2x}{\cos^2x}=2

\dfrac{\sin^2x}{(\cos^2x)^2}+\dfrac{2-\sin^2x}{\cos^2x}=2\\\\\text{Use}\ \sin^2x+\cos^2x=1\to\sin^2x=1-\cos^2x\\\\\dfrac{1-\cos^2x}{(\cos^2x)^2}+\dfrac{2-(1-\cos^2x)}{\cos^2x}=2\\\\\dfrac{1-\cos^2x}{(\cos^2x)^2}+\dfrac{2-1+\cos^2x}{\cos^2x}=2\\\\\dfrac{1-\cos^2x}{(\cos^2x)^2}+\dfrac{1+\cos^2x}{\cos^2x}=2

\dfrac{1-\cos^2x}{(\cos^2x)^2}+\dfrac{(1+\cos^2x)(\cos^2x)}{(\cos^2x)^2}=2\qquad\text{Use the distributive property}\\\\\dfrac{1-\cos^2x+\cos^2x+\cos^4x}{\cos^4x}=2\\\\\dfrac{1+\cos^4x}{\cos^4x}=2\qquad\text{multiply both sides by}\ \cos^4x\neq0\\\\1+\cos^4x=2\cos^4x\qquad\text{subtract}\ \cos^4x\ \text{from both sides}\\\\1=\cos^4x\iff \cos x=\pm\sqrt1\to\cos x=\pm1\\\\ x=k\pi\ for\ k\in\mathbb{Z}\\\\\text{On the interval}\ 0\leq x

4 0
2 years ago
Mai bought gas for her car. Gas cost $2.95 per gallon Mai bought 8.2 gallons What was the total cost for Mai's gas?
yulyashka [42]

Answer: $24.19

Step-by-step explanation:

From the question, we are informed that Mai bought gas for her car which cost $2.95 per gallon and that she bought 8.2 gallons.

The total cost for Mai's gas will be:

= $2.95 × 8.2

= $24.19

7 0
3 years ago
Which expression is equivalent to 3d + 1?
weqwewe [10]

Answer:

3d + 1

I'm pretty sure it's the same thing.

4 0
2 years ago
What is the value of f(-4)
nirvana33 [79]
4 is what is knows as the factorial of 4. 4=4*3*2*1=24
8 0
3 years ago
Grace is considering purchasing a phone plan. The phone plan
levacccp [35]

Answer:

211 text messages

Step-by-step explanation:

20+(m•0.10)=41.10

41.1-20=21.1÷0.1=211

5 0
2 years ago
Other questions:
  • 7/8 times c equals 8
    15·2 answers
  • Rewrite 2x^2+13x+26/x+4 in the form q(x)+r(x)/b(x) . Then find q(x) and r(x).
    8·2 answers
  • Jon’s Summer baseball league has 36 thirteen -year-olds and 48 fourteen year-olds. Write the ratio of 13-year-olds to 14-year-ol
    12·1 answer
  • HURRY HELP ME select ALL the correct answers
    5·1 answer
  • What is the range of y=|2x-1|
    11·1 answer
  • Find the tangent ratio of angle Θ. Hint: Use the slash symbol ( / ) to represent the fraction bar, and enter the fraction with n
    13·2 answers
  • two forces of magnitude 100n and 70n act on an object. the angle between the forces is 120 degrees. what is the resultant force?
    5·1 answer
  • What functions must a cell preform to maintain a stable internal environment?
    13·2 answers
  • A truck driver is driving from Nome, Alaska to Death Valley, California. Because he is traveling between locations with extreme
    8·2 answers
  • Evaluate:<br><br> 4(s +8) = 48
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!