PH = pKa + log
![\frac{[base]}{[Acid]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5Bbase%5D%7D%7B%5BAcid%5D%7D%20)
Acid is HC₂H₃O₂ and conjugate base is KC₂H₃O₂,
pKa = - log Ka = - log (1.8 x 10⁻⁵) = 4.74
so pH = 4.74 + log (0.2/0.2) = 4.74
This is called maximum buffer capacity (when acid conc. and base conc. are equal) the pH = pKa in this case
Answer:
The correct approach is Option B (Peer Review).
Explanation:
- Rather made reference to someone as a scientific peer-review, it encourages the specialist who has not been essential to the study team to analyze the study objectively and pointed out everyone's mistakes. It serves as major self-regulation for scholars and aims to make the publishing process somewhat credible. Hence, the solution to this issue is Peer Examination.
- Funding organizations rarely have the capabilities to recognize out mistakes, whereas definitive analysis is a method of study that helps to make a definitive statement. The gathering of data is simply a process of scientific study.
Other approaches do not apply to the example mentioned. Although the one mentioned is right.
Answer:
<u>Some examples of physical properties are:
</u>
color (intensive)
density (intensive)
volume (extensive)
mass (extensive)
boiling point (intensive): the temperature at which a substance boils.
melting point (intensive): the temperature at which a substance melts.
Explanation:
Hope this helped! <3
Answer and Explanation:
- <em>Computers ( The computers are very old and very slow, and we have to notice that almost everyone are using computers at the same time at the school, which makes it even harder for it to load up assignments. )</em>
- <em>The Rick Rolling ( Everyone keeps sending links to teachers and students saying that it is part of some assignment but then you have to listen to Rick Astley, they should really block these links. )</em>
- <em>The lockers ( The lockers are also very old and they are breaking down and rusting a lot from the moisture in the hallways. One of the lockers even broke down today!!! I hope they can fix this so no one else gets hit with a locker door. )</em>
<em>Hope this helps! ;)</em>
Answer:
(a) rate = -(1/3) Δ[O₂]/Δt = +(1/2) Δ[O₃]/Δt
(b) Δ[O₃]/Δt = 1.07x10⁻⁵ mol/Ls
Explanation:
By definition, t<u>he reaction rate for a chemical reaction can be expressed by the decrease in the concentration of reactants or the increase in the concentration of products:</u>
aX → bY (1)
![rate= -\frac{1}{a} \frac{\Delta[X]}{ \Delta t} = +\frac{1}{b} \frac{\Delta[Y]}{ \Delta t}](https://tex.z-dn.net/?f=%20rate%3D%20-%5Cfrac%7B1%7D%7Ba%7D%20%5Cfrac%7B%5CDelta%5BX%5D%7D%7B%20%5CDelta%20t%7D%20%3D%20%2B%5Cfrac%7B1%7D%7Bb%7D%20%5Cfrac%7B%5CDelta%5BY%5D%7D%7B%20%5CDelta%20t%7D%20)
<em>where, a and b are the coefficients of de reactant X and product Y, respectively. </em>
(a) Based on the definition above, we can express the rate of reaction (2) as follows:
3O₂(g) → 2O₃(g) (2)
(3)
(b) From the rate of disappearance of O₂ in equation (3), we can find the rate of appearance of O₃:
![rate = +\frac{1}{2} \frac{\Delta[O_{3}]}{ \Delta t} = -\frac{1}{3} \frac{\Delta[O_{2}]}{ \Delta t}](https://tex.z-dn.net/?f=%20rate%20%3D%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7B%5CDelta%5BO_%7B3%7D%5D%7D%7B%20%5CDelta%20t%7D%20%3D%20-%5Cfrac%7B1%7D%7B3%7D%20%5Cfrac%7B%5CDelta%5BO_%7B2%7D%5D%7D%7B%20%5CDelta%20t%7D%20)
![\frac{\Delta[O_{3}]}{ \Delta t} = 1.07 \cdot 10^{-5} \frac{mol}{Ls}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5CDelta%5BO_%7B3%7D%5D%7D%7B%20%5CDelta%20t%7D%20%3D%201.07%20%5Ccdot%2010%5E%7B-5%7D%20%5Cfrac%7Bmol%7D%7BLs%7D%20)
So the rate of appearance of O₃ is 1.07x10⁻⁵ mol/Ls.
Have a nice day!