Answer:
It is easier to hear a musician in the classroom than outdoors
Explanation:
It is easier to hear a musician in the classroom due to the improved acoustics provided by the walls of the classroom whereby along with the direct sound of the musician, which is the lead source of the sounds, there is an increased number of indirect sound reaching the ear in the classroom than outdoors and due to precedence effect, all the sound appear to come from the musician
In music played outside, along side the direct sound from the musician, the indirect sound that reach the ear is echoed from maybe by only the ground while the majority of the sound from the music wanders away with the wind and in other directions as well as being absorbed such that speakers will be required to improve the sound of the music outdoors.
Answer:
1) k = 10 [N/m]
2) a-) x = 0.4 [m]
b) x = 0.075 [m]
Explanation:
To be able to solve this type of problems that include springs we must use Hooke's law, which relates the force to the deformed length of the spring and in the same way to the spring coefficient.
F = k*x
where:
F = force [N] (units of Newtons]
k = spring constant [N/m]
x = distance = 10 [cm] = 0.1 [m]
Now, the weight is equal to the product of the mass by the gravity
W = m*g = F
where:
m = mass = 100 [g] = 0.1 [kg]
g = gravity acceleration = 10 [m/s²]
F = 0.1*10 = 1 [N]
Now clearing k
k = F/x
k = 1/0.1
k = 10 [N/m]
2)
a ) if the force is 4 [N]
clearing x
x = F/k
x = 4/10
x = 0.4 [m]
m = 75 [g] = 0.075 [kg]
W = m*g = F
F = 0.075*10 = 0.75 [N]
x = .75/10
x = 0.075 [m]
Answer:
30 Watts
Explanation:
Power = Work/Time
Work = Force*Distance
Power = Force * Distance / Time
Power = 15 N * 20 meters / 10 sec
Power = 30 Watts
Answer:
B. silicate rocks and metals