Answer:
The mini Cooper will experience the greater force
Explanation:
Generally, a bulldozer has a greater mass compared to a Mini Cooper hence when both of these vehicles interact in an head on collision the Mini Cooper will experience a greater force because the bulldozer has a greater momentum
The weight of the meterstick is:

and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance

from the pivot.
The torque generated by the weight of the meterstick around the pivot is:

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:

from which we find the value of d2:

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
To solve this problem it is necessary to apply the principles of conservation of Energy in order to obtain the final work done.
The electric field in terms of the Force can be expressed as

Where,
F = Force
E= Electric Field
q = Charge
Puesto que el trabajo realizado es equivalente al cambio en la energía cinetica entonces tenemos que
KE = W
KE = F*d
In the First Case,

In Second Case,



The total energy change would be subject to,


Therefore the Kinetic Energy change of the charged object is 27.976J
Answer:
in 1 second 3m, in 2 seconds 6m, in 3 seconds 9m.
Explanation:
distance=speed × time
Answer:
Option (D) is correct.
Explanation:
The balloon lands horizontally at a distance of 420 m from a point where it as released.
Velocity of air balloon along +X axis =10 m/s
velocity of ball=4 m/s along + X axis
the velocity of balloon gets added to the velocity of ball. So the resultant velocity of the balloon=10+4 = 14 m/s
time taken= 30 s
The distance traveled is given by d= v t
d= 14 (30)
d= 420 m
Thus the balloon lands horizontally at a distance of 420 m from a point where it as released.