The radius of the curved road at the given condition is 54.1 m.
The given parameters:
- <em>mass of the car, m = 1000 kg</em>
- <em>speed of the car, v = 50 km/h = 13.89 m/s</em>
- <em>banking angle, θ = 20⁰</em>
The normal force on the car due to banking curve is calculated as follows;

The horizontal force on the car due to the banking curve is calculated as follows;

<em>Divide </em><em>the second equation by the first;</em>

Thus, the radius of the curved road at the given condition is 54.1 m.
Learn more about banking angle here: brainly.com/question/8169892
Answer:

Explanation:
For this interesting problem, we use the definition of centripetal acceleration
a = v² / r
angular and linear velocity are related
v = w r
we substitute
a = w² r
the rectangular body rotates at an angular velocity w
We locate the points, unfortunately the diagram is not shown. In this case we have the axis of rotation in a corner, called O, in one of the adjacent corners we call it A and the opposite corner A
the distance OB = L₂
the distance AB = L₁
the sides of the rectangle
It is indicated that the acceleration in in A and B are related
we substitute the value of the acceleration
w² r_A = n r_B
the distance from the each corner is
r_B = L₂
r_A =
we substitute
\sqrt{L_1^2 + L_2^2} = n L₂
L₁² + L₂² = n² L₂²
L₁² = (n²-1) L₂²
When the dust is too thick to penetrate with visible light, such as the Nebula, Radio Waves are used to penetrate the dust. Longer radio waves can completely penetrate the thick cloud cover, allowing scientists to beam radar waves.
your answer is make up artist